// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2023 NXP. * NXP PF5300 pmic driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct pf5300_dvs_config { unsigned int run_reg; unsigned int run_mask; unsigned int standby_reg; unsigned int standby_mask; }; struct pf5300_regulator_desc { struct regulator_desc desc; const struct pf5300_dvs_config dvs; }; struct pf5300 { struct device *dev; struct regmap *regmap; enum pf5300_chip_type type; unsigned int rcnt; unsigned short addr; bool crc_en; }; static const struct regmap_range pf5300_range = { .range_min = PF5300_REG_INT_STATUS1, .range_max = PF5300_REG_FLT_CNT2, }; static const struct regmap_access_table pf5300_volatile_regs = { .yes_ranges = &pf5300_range, .n_yes_ranges = 1, }; static const struct regmap_config pf5300_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &pf5300_volatile_regs, .max_register = PF5300_MAX_REGISTER - 1, .cache_type = REGCACHE_RBTREE, }; static uint8_t crc8_j1850(uint8_t *data, uint8_t length) { uint8_t t_crc; uint8_t i, j; t_crc = 0xFF; for (i = 0; i < length; i++) { t_crc ^= data[i]; for (j = 0; j < 8; j++) { if ((t_crc & 0x80) != 0) { t_crc <<= 1; t_crc ^= 0x1D; } else { t_crc <<= 1; } } } return t_crc; } static int pf5300_pmic_read(struct pf5300 *pf5300, unsigned int reg, unsigned int *val) { u8 crcBuf[3]; u8 data[2], crc; int ret; if (reg < PF5300_MAX_REGISTER) { ret = regmap_raw_read(pf5300->regmap, reg, data, pf5300->crc_en ? 2U : 1U); if (ret) return ret; *val = data[0]; if (pf5300->crc_en) { /* Get CRC */ crcBuf[0] = pf5300->addr << 1U | 0x1U; crcBuf[1] = reg; crcBuf[2] = data[0]; crc = crc8_j1850(crcBuf, 3U); if (crc != data[1]) return -EINVAL; } else { return ret; } } else { return -EINVAL; } return ret; } static int pf5300_pmic_write(struct pf5300 *pf5300, unsigned int reg, unsigned int val, uint8_t mask) { uint8_t crcBuf[3]; uint8_t data[2]; unsigned int rxBuf; int ret; /* If not updating entire register, perform a read-mod-write */ data[0] = val; if (mask != 0xFFU) { /* Read data */ ret = pf5300_pmic_read(pf5300, reg, &rxBuf); if (ret) { dev_err(pf5300->dev, "Read reg=%0x error!\n", reg); return ret; } data[0] = (val & mask) | (rxBuf & (~mask)); } if (reg < PF5300_MAX_REGISTER) { if (pf5300->crc_en) { /* Get CRC */ crcBuf[0] = pf5300->addr << 1U; crcBuf[1] = reg; crcBuf[2] = data[0]; data[1] = crc8_j1850(crcBuf, 3U); } /* Write data */ ret = regmap_raw_write(pf5300->regmap, reg, data, pf5300->crc_en ? 2U : 1U); if (ret) { dev_err(pf5300->dev, "Write reg=%0x error!\n", reg); return ret; } } return ret; } /** * pf5300_regulator_enable_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their enable() operation, saving some code. */ static int pf5300_regulator_enable_regmap(struct regulator_dev *rdev) { unsigned int val; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); if (rdev->desc->enable_is_inverted) { val = rdev->desc->disable_val; } else { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } return pf5300_pmic_write(pf5300, rdev->desc->enable_reg, val, rdev->desc->enable_mask); } /** * pf5300_regulator_disable_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their disable() operation, saving some code. */ static int pf5300_regulator_disable_regmap(struct regulator_dev *rdev) { unsigned int val; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); if (rdev->desc->enable_is_inverted) { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } else { val = rdev->desc->disable_val; } return pf5300_pmic_write(pf5300, rdev->desc->enable_reg, val, rdev->desc->enable_mask); } /** * pf5300_regulator_is_enabled_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their is_enabled operation, saving some code. */ int pf5300_regulator_is_enabled_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); ret = pf5300_pmic_read(pf5300, rdev->desc->enable_reg, &val); if (ret != 0) return ret; val &= rdev->desc->enable_mask; if (rdev->desc->enable_is_inverted) { if (rdev->desc->enable_val) return val != rdev->desc->enable_val; return val == 0; } else { if (rdev->desc->enable_val) return val == rdev->desc->enable_val; return val != 0; } } /** * pf5300_regulator_set_voltage_sel_regmap for regmap users * * @rdev: regulator to operate on * @sel: Selector to set * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their set_voltage_vsel operation, saving some code. */ static int pf5300_regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned int sel) { int ret; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); sel <<= ffs(rdev->desc->vsel_mask) - 1; ret = pf5300_pmic_write(pf5300, rdev->desc->vsel_reg, sel, rdev->desc->vsel_mask); if (ret) return ret; if (rdev->desc->apply_bit) ret = pf5300_pmic_write(pf5300, rdev->desc->apply_reg, rdev->desc->apply_bit, rdev->desc->apply_bit); return ret; } static int find_closest_bigger(unsigned int target, const unsigned int *table, unsigned int num_sel, unsigned int *sel) { unsigned int s, tmp, max, maxsel = 0; bool found = false; max = table[0]; for (s = 0; s < num_sel; s++) { if (table[s] > max) { max = table[s]; maxsel = s; } if (table[s] >= target) { if (!found || table[s] - target < tmp - target) { tmp = table[s]; *sel = s; found = true; if (tmp == target) break; } } } if (!found) { *sel = maxsel; return -EINVAL; } return 0; } /** * pf5300_regulator_set_ramp_delay_regmap * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the ramp_reg * and ramp_mask fields in their descriptor and then use this as their * set_ramp_delay operation, saving some code. */ int pf5300_regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay) { int ret; unsigned int sel; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table)) return -EINVAL; ret = find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table, rdev->desc->n_ramp_values, &sel); if (ret) { dev_warn(rdev_get_dev(rdev), "Can't set ramp-delay %u, setting %u\n", ramp_delay, rdev->desc->ramp_delay_table[sel]); } sel <<= ffs(rdev->desc->ramp_mask) - 1; return pf5300_pmic_write(pf5300, rdev->desc->ramp_reg, sel, rdev->desc->ramp_mask); } /** * pf5300_regulator_get_voltage_sel_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their get_voltage_vsel operation, saving some code. */ int pf5300_regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) { unsigned int val; int ret; struct pf5300 *pf5300 = dev_get_drvdata(rdev->dev.parent); ret = pf5300_pmic_read(pf5300, rdev->desc->vsel_reg, &val); if (ret != 0) return ret; val &= rdev->desc->vsel_mask; val >>= ffs(rdev->desc->vsel_mask) - 1; return val; } static const struct regulator_ops pf5300_dvs_sw_regulator_ops = { .enable = pf5300_regulator_enable_regmap, .disable = pf5300_regulator_disable_regmap, .is_enabled = pf5300_regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear_range, .set_voltage_sel = pf5300_regulator_set_voltage_sel_regmap, .get_voltage_sel = pf5300_regulator_get_voltage_sel_regmap, .set_voltage_time_sel = regulator_set_voltage_time_sel, .set_ramp_delay = pf5300_regulator_set_ramp_delay_regmap, }; /* * SW1 0.5V to 1.2V * 0.5V to 1.2V (5mV step) */ static const struct linear_range pf5300_dvs_sw1_volts[] = { REGULATOR_LINEAR_RANGE(500000, 0x00, 0x8C, 5000), REGULATOR_LINEAR_RANGE(0, 0x8D, 0xFF, 0), }; /* * SW1 * SW1_DVS[1:0] SW1 slew ramp rate setting * 00: 8mV/8usec * 01: 8mV/4usec * 10: 8mV/2usec * 11: 8mV/1usec */ static const unsigned int pf5300_dvs_sw_ramp_table[] = { 1000, 2000, 4000, 8000 }; /* SW1 dvs 0.5v to 1.35v * SW2-5 dvs 0.3v to 1.35v */ static int sw_set_dvs(const struct regulator_desc *desc, struct device_node *np, struct regmap *regmap, char *prop, unsigned int reg, unsigned int mask) { int ret, i; uint32_t uv; ret = of_property_read_u32(np, prop, &uv); if (ret == -EINVAL) return 0; else if (ret) return ret; for (i = 0; i < desc->n_voltages; i++) { ret = regulator_desc_list_voltage_linear_range(desc, i); if (ret < 0) continue; if (ret == uv) { i <<= ffs(desc->vsel_mask) - 1; ret = regmap_update_bits(regmap, reg, mask, i); break; } } return ret; } static int pf5300_set_dvs_levels(struct device_node *np, const struct regulator_desc *desc, struct regulator_config *cfg) { struct pf5300_regulator_desc *data = container_of(desc, struct pf5300_regulator_desc, desc); const struct pf5300_dvs_config *dvs = &data->dvs; unsigned int reg, mask; char *prop; int i, ret = 0; for (i = 0; i < PF5300_DVS_LEVEL_MAX; i++) { switch (i) { case PF5300_DVS_LEVEL_RUN: prop = "nxp,dvs-run-voltage"; reg = dvs->run_reg; mask = dvs->run_mask; break; case PF5300_DVS_LEVEL_STANDBY: prop = "nxp,dvs-standby-voltage"; reg = dvs->standby_reg; mask = dvs->standby_mask; break; default: return -EINVAL; } ret = sw_set_dvs(desc, np, cfg->regmap, prop, reg, mask); if (ret) break; } return ret; } static const struct pf5300_regulator_desc pf5300_regulators[] = { { .desc = { .name = "sw1", .of_match = of_match_ptr("SW1"), .regulators_node = of_match_ptr("regulators"), .id = PF5300_SW1, .ops = &pf5300_dvs_sw_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF5300_SW1_VOLTAGE_NUM, .linear_ranges = pf5300_dvs_sw1_volts, .n_linear_ranges = ARRAY_SIZE(pf5300_dvs_sw1_volts), .vsel_reg = PF5300_REG_SW1_VOLT, .vsel_mask = SW1_VOLT_MASK, .enable_reg = PF5300_REG_SW1_CTRL1, .enable_mask = SW1_MODE_MASK, .enable_val = SW_MODE_PWM, .ramp_reg = PF5300_REG_SW1_CTRL1, .ramp_mask = SW1_RAMP_MASK, .ramp_delay_table = pf5300_dvs_sw_ramp_table, .n_ramp_values = ARRAY_SIZE(pf5300_dvs_sw_ramp_table), .owner = THIS_MODULE, .of_parse_cb = pf5300_set_dvs_levels, }, .dvs = { .run_reg = PF5300_REG_SW1_VOLT, .run_mask = SW1_VOLT_MASK, .standby_reg = PF5300_REG_SW1_STBY_VOLT, .standby_mask = SW1_STBY_VOLT_MASK, }, }, }; static int pf5300_i2c_probe(struct i2c_client *i2c) { enum pf5300_chip_type type = (unsigned int)(uintptr_t) of_device_get_match_data(&i2c->dev); const struct pf5300_regulator_desc *regulator_desc; struct regulator_config config = { }; struct pf5300 *pf5300; unsigned int val, device_id, device_fam, i; int ret; struct device_node *np = i2c->dev.of_node; pf5300 = devm_kzalloc(&i2c->dev, sizeof(struct pf5300), GFP_KERNEL); if (!pf5300) return -ENOMEM; switch (type) { case PF5300_TYPE_PF5300: case PF5300_TYPE_PF5301: case PF5300_TYPE_PF5302: regulator_desc = pf5300_regulators; pf5300->rcnt = ARRAY_SIZE(pf5300_regulators); break; default: dev_err(&i2c->dev, "Unknown device type"); return -EINVAL; } if (of_property_read_bool(np, "i2c-crc-enable")) pf5300->crc_en = true; pf5300->type = type; pf5300->dev = &i2c->dev; dev_set_drvdata(&i2c->dev, pf5300); pf5300->regmap = devm_regmap_init_i2c(i2c, &pf5300_regmap_config); if (IS_ERR(pf5300->regmap)) { dev_err(&i2c->dev, "regmap initialization failed\n"); return PTR_ERR(pf5300->regmap); } ret = pf5300_pmic_read(pf5300, PF5300_REG_DEV_ID, &val); if (ret) { dev_err(&i2c->dev, "Read device id error\n"); return ret; } device_id = val & 0x0F; device_fam = (val & 0xF0) >> 4; /* Check your board and dts for match the right pmic */ if (device_fam == 0x05 && ((device_id != 0x03 && type == PF5300_TYPE_PF5300) || (device_id != 0x04 && type == PF5300_TYPE_PF5301) || (device_id != 0x05 && type == PF5300_TYPE_PF5302))) { dev_err(&i2c->dev, "Device id(%x) mismatched\n", device_id); return -EINVAL; } for (i = 0; i < pf5300->rcnt; i++) { const struct regulator_desc *desc; struct regulator_dev *rdev; const struct pf5300_regulator_desc *r; r = ®ulator_desc[i]; desc = &r->desc; config.regmap = pf5300->regmap; config.dev = pf5300->dev; rdev = devm_regulator_register(pf5300->dev, desc, &config); if (IS_ERR(rdev)) { ret = PTR_ERR(rdev); dev_err(pf5300->dev, "Failed to register regulator(%s): %d\n", desc->name, ret); return ret; } } dev_err(&i2c->dev, "%s probed.\n", type == PF5300_TYPE_PF5300 ? "pf5300" : (type == PF5300_TYPE_PF5301 ? "pf5301" : "pf5302")); return 0; } static const struct of_device_id pf5300_of_match[] = { { .compatible = "nxp,pf5300", .data = (void *)PF5300_TYPE_PF5300, }, { .compatible = "nxp,pf5301", .data = (void *)PF5300_TYPE_PF5301, }, { .compatible = "nxp,pf5302", .data = (void *)PF5300_TYPE_PF5302, }, { } }; MODULE_DEVICE_TABLE(of, pf5300_of_match); static struct i2c_driver pf5300_i2c_driver = { .driver = { .name = "nxp-pf5300", .of_match_table = pf5300_of_match, }, .probe = pf5300_i2c_probe, }; module_i2c_driver(pf5300_i2c_driver); MODULE_AUTHOR("Joy Zou "); MODULE_DESCRIPTION("NXP PF5300 Power Management IC driver"); MODULE_LICENSE("GPL");