// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2024 NXP. * NXP PF9453 pmic driver */ #include #include #include #include #include #include #include #include #include #include #include #include struct pf9453_dvs_config { unsigned int run_reg; /* dvs0 */ unsigned int run_mask; unsigned int standby_reg; /* dvs1 */ unsigned int standby_mask; }; struct pf9453_regulator_desc { struct regulator_desc desc; const struct pf9453_dvs_config dvs; }; struct pf9453 { struct device *dev; struct regmap *regmap; struct gpio_desc *sd_vsel_gpio; enum pf9453_chip_type type; unsigned int rcnt; int irq; }; static const struct regmap_range pf9453_status_range = { .range_min = PF9453_REG_INT1, .range_max = PF9453_REG_PWRON_STAT, }; static const struct regmap_access_table pf9453_volatile_regs = { .yes_ranges = &pf9453_status_range, .n_yes_ranges = 1, }; static const struct regmap_config pf9453_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_table = &pf9453_volatile_regs, .max_register = PF9453_MAX_REG - 1, .cache_type = REGCACHE_RBTREE, }; /* * BUCK2 * BUCK2RAM[1:0] BUCK2 DVS ramp rate setting * 00: 25mV/1usec * 01: 25mV/2usec * 10: 25mV/4usec * 11: 25mV/8usec */ static const unsigned int pf9453_dvs_buck_ramp_table[] = { 25000, 12500, 6250, 3125 }; static bool is_reg_protect(uint reg) { switch (reg) { case PF9453_REG_BUCK1OUT: case PF9453_REG_BUCK2OUT: case PF9453_REG_BUCK3OUT: case PF9453_REG_BUCK4OUT: case PF9453_REG_LDO1OUT_L: case PF9453_REG_LDO1OUT_H: case PF9453_REG_LDO2OUT: case PF9453_REG_LDOSNVS_CFG1: case PF9453_REG_BUCK2OUT_MAX_LIMIT: case PF9453_REG_BUCK2OUT_MIN_LIMIT: return true; default: return false; } } static int pf9453_pmic_write(struct pf9453 *pf9453, unsigned int reg, uint8_t mask, unsigned int val) { uint8_t data, key; unsigned int rxBuf; int ret = -EINVAL; /* If not updating entire register, perform a read-mod-write */ data = val; key = PF9453_UNLOCK_KEY; if (mask != 0xFFU) { /* Read data */ ret = regmap_read(pf9453->regmap, reg, &rxBuf); if (ret) { dev_err(pf9453->dev, "Read reg=%0x error!\n", reg); return ret; } data = (val & mask) | (rxBuf & (~mask)); } if (reg < PF9453_MAX_REG) { if (is_reg_protect(reg)) { ret = regmap_raw_write(pf9453->regmap, PF9453_REG_LOCK, &key, 1U); if (ret) { dev_err(pf9453->dev, "Write reg=%0x error!\n", reg); return ret; } ret = regmap_raw_write(pf9453->regmap, reg, &data, 1U); if (ret) { dev_err(pf9453->dev, "Write reg=%0x error!\n", reg); return ret; } key = PF9453_LOCK_KEY; ret = regmap_raw_write(pf9453->regmap, PF9453_REG_LOCK, &key, 1U); if (ret) { dev_err(pf9453->dev, "Write reg=%0x error!\n", reg); return ret; } } else { ret = regmap_raw_write(pf9453->regmap, reg, &data, 1U); if (ret) { dev_err(pf9453->dev, "Write reg=%0x error!\n", reg); return ret; } } } return ret; } /** * pf9453_regulator_enable_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their enable() operation, saving some code. */ static int pf9453_regulator_enable_regmap(struct regulator_dev *rdev) { unsigned int val; struct pf9453 *pf9453 = dev_get_drvdata(rdev->dev.parent); if (rdev->desc->enable_is_inverted) { val = rdev->desc->disable_val; } else { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } return pf9453_pmic_write(pf9453, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } /** * pf9453_regulator_disable_regmap for regmap users * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the * enable_reg and enable_mask fields in their descriptor and then use * this as their disable() operation, saving some code. */ static int pf9453_regulator_disable_regmap(struct regulator_dev *rdev) { unsigned int val; struct pf9453 *pf9453 = dev_get_drvdata(rdev->dev.parent); if (rdev->desc->enable_is_inverted) { val = rdev->desc->enable_val; if (!val) val = rdev->desc->enable_mask; } else { val = rdev->desc->disable_val; } return pf9453_pmic_write(pf9453, rdev->desc->enable_reg, rdev->desc->enable_mask, val); } /** * pf9453_regulator_set_voltage_sel_regmap for regmap users * * @rdev: regulator to operate on * @sel: Selector to set * * Regulators that use regmap for their register I/O can set the * vsel_reg and vsel_mask fields in their descriptor and then use this * as their set_voltage_vsel operation, saving some code. */ static int pf9453_regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned int sel) { int ret; struct pf9453 *pf9453 = dev_get_drvdata(rdev->dev.parent); sel <<= ffs(rdev->desc->vsel_mask) - 1; ret = pf9453_pmic_write(pf9453, rdev->desc->vsel_reg, rdev->desc->vsel_mask, sel); if (ret) return ret; if (rdev->desc->apply_bit) ret = pf9453_pmic_write(pf9453, rdev->desc->apply_reg, rdev->desc->apply_bit, rdev->desc->apply_bit); return ret; } static int find_closest_bigger(unsigned int target, const unsigned int *table, unsigned int num_sel, unsigned int *sel) { unsigned int s, tmp, max, maxsel = 0; bool found = false; max = table[0]; for (s = 0; s < num_sel; s++) { if (table[s] > max) { max = table[s]; maxsel = s; } if (table[s] >= target) { if (!found || table[s] - target < tmp - target) { tmp = table[s]; *sel = s; found = true; if (tmp == target) break; } } } if (!found) { *sel = maxsel; return -EINVAL; } return 0; } /** * pf9453_regulator_set_ramp_delay_regmap * * @rdev: regulator to operate on * * Regulators that use regmap for their register I/O can set the ramp_reg * and ramp_mask fields in their descriptor and then use this as their * set_ramp_delay operation, saving some code. */ static int pf9453_regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay) { int ret; unsigned int sel; struct pf9453 *pf9453 = dev_get_drvdata(rdev->dev.parent); if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table)) return -EINVAL; ret = find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table, rdev->desc->n_ramp_values, &sel); if (ret) { dev_warn(rdev_get_dev(rdev), "Can't set ramp-delay %u, setting %u\n", ramp_delay, rdev->desc->ramp_delay_table[sel]); } sel <<= ffs(rdev->desc->ramp_mask) - 1; return pf9453_pmic_write(pf9453, rdev->desc->ramp_reg, rdev->desc->ramp_mask, sel); } static const struct regulator_ops pf9453_dvs_buck_regulator_ops = { .enable = pf9453_regulator_enable_regmap, .disable = pf9453_regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear_range, .set_voltage_sel = pf9453_regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_time_sel = regulator_set_voltage_time_sel, .set_ramp_delay = pf9453_regulator_set_ramp_delay_regmap, }; static const struct regulator_ops pf9453_buck_regulator_ops = { .enable = pf9453_regulator_enable_regmap, .disable = pf9453_regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear_range, .set_voltage_sel = pf9453_regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_time_sel = regulator_set_voltage_time_sel, }; static const struct regulator_ops pf9453_ldo_regulator_ops = { .enable = pf9453_regulator_enable_regmap, .disable = pf9453_regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .list_voltage = regulator_list_voltage_linear_range, .set_voltage_sel = pf9453_regulator_set_voltage_sel_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, }; /* * BUCK1/3/4 * 0.60 to 3.775V (25mV step) */ static const struct linear_range pf9453_buck134_volts[] = { REGULATOR_LINEAR_RANGE(600000, 0x00, 0x7F, 25000), }; /* * BUCK2 * 0.60 to 2.1875V (12.5mV step) */ static const struct linear_range pf9453_buck2_volts[] = { REGULATOR_LINEAR_RANGE(600000, 0x00, 0x7F, 12500), }; /* * LDO1 * 0.8 to 3.3V (25mV step) */ static const struct linear_range pf9453_ldo1_volts[] = { REGULATOR_LINEAR_RANGE(800000, 0x00, 0x64, 25000), }; /* * LDO2 * 0.5 to 1.95V (25mV step) */ static const struct linear_range pf9453_ldo2_volts[] = { REGULATOR_LINEAR_RANGE(500000, 0x00, 0x3A, 25000), }; /* * LDOSNVS * 1.2 to 3.4V (25mV step) */ static const struct linear_range pf9453_ldosnvs_volts[] = { REGULATOR_LINEAR_RANGE(1200000, 0x00, 0x58, 25000), }; static int buck_set_dvs(const struct regulator_desc *desc, struct device_node *np, struct pf9453 *pf9453, char *prop, unsigned int reg, unsigned int mask) { int ret, i; uint32_t uv; ret = of_property_read_u32(np, prop, &uv); if (ret == -EINVAL) return 0; else if (ret) return ret; for (i = 0; i < desc->n_voltages; i++) { ret = regulator_desc_list_voltage_linear_range(desc, i); if (ret < 0) continue; if (ret == uv) { i <<= ffs(desc->vsel_mask) - 1; ret = pf9453_pmic_write(pf9453, reg, mask, i); break; } } if (ret == 0) { struct pf9453_regulator_desc *regulator = container_of(desc, struct pf9453_regulator_desc, desc); /* Enable DVS control through PMIC_STBY_REQ for this BUCK */ ret = pf9453_pmic_write(pf9453, regulator->desc.enable_reg, BUCK2_LPMODE, BUCK2_LPMODE); } return ret; } static int pf9453_set_dvs_levels(struct device_node *np, const struct regulator_desc *desc, struct regulator_config *cfg) { struct pf9453_regulator_desc *data = container_of(desc, struct pf9453_regulator_desc, desc); const struct pf9453_dvs_config *dvs = &data->dvs; struct pf9453 *pf9453 = dev_get_drvdata(cfg->dev); unsigned int reg, mask; char *prop; int i, ret = 0; for (i = 0; i < PF9453_DVS_LEVEL_MAX; i++) { switch (i) { case PF9453_DVS_LEVEL_RUN: prop = "nxp,dvs-run-voltage"; reg = dvs->run_reg; mask = dvs->run_mask; break; case PF9453_DVS_LEVEL_DPSTANDBY: case PF9453_DVS_LEVEL_STANDBY: prop = "nxp,dvs-standby-voltage"; reg = dvs->standby_reg; mask = dvs->standby_mask; break; default: return -EINVAL; } ret = buck_set_dvs(desc, np, pf9453, prop, reg, mask); if (ret) break; } return ret; } static const struct pf9453_regulator_desc pf9453_regulators[] = { { .desc = { .name = "buck1", .of_match = of_match_ptr("BUCK1"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_BUCK1, .ops = &pf9453_buck_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_BUCK1_VOLTAGE_NUM, .linear_ranges = pf9453_buck134_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_buck134_volts), .vsel_reg = PF9453_REG_BUCK1OUT, .vsel_mask = BUCK1OUT_MASK, .enable_reg = PF9453_REG_BUCK1CTRL, .enable_mask = BUCK1_ENMODE_MASK, .enable_val = BUCK_ENMODE_ONREQ, .owner = THIS_MODULE, }, }, { .desc = { .name = "buck2", .of_match = of_match_ptr("BUCK2"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_BUCK2, .ops = &pf9453_dvs_buck_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_BUCK2_VOLTAGE_NUM, .linear_ranges = pf9453_buck2_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_buck2_volts), .vsel_reg = PF9453_REG_BUCK2OUT, .vsel_mask = BUCK2OUT_MASK, .enable_reg = PF9453_REG_BUCK2CTRL, .enable_mask = BUCK2_ENMODE_MASK, .enable_val = BUCK_ENMODE_ONREQ, .ramp_reg = PF9453_REG_BUCK2CTRL, .ramp_mask = BUCK2_RAMP_MASK, .ramp_delay_table = pf9453_dvs_buck_ramp_table, .n_ramp_values = ARRAY_SIZE(pf9453_dvs_buck_ramp_table), .owner = THIS_MODULE, .of_parse_cb = pf9453_set_dvs_levels, }, .dvs = { .run_reg = PF9453_REG_BUCK2OUT, .run_mask = BUCK2OUT_MASK, .standby_reg = PF9453_REG_BUCK2OUT_STBY, .standby_mask = BUCK2OUT_STBY_MASK, }, }, { .desc = { .name = "buck3", .of_match = of_match_ptr("BUCK3"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_BUCK3, .ops = &pf9453_buck_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_BUCK3_VOLTAGE_NUM, .linear_ranges = pf9453_buck134_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_buck134_volts), .vsel_reg = PF9453_REG_BUCK3OUT, .vsel_mask = BUCK3OUT_MASK, .enable_reg = PF9453_REG_BUCK3CTRL, .enable_mask = BUCK3_ENMODE_MASK, .enable_val = BUCK_ENMODE_ONREQ, .owner = THIS_MODULE, }, }, { .desc = { .name = "buck4", .of_match = of_match_ptr("BUCK4"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_BUCK4, .ops = &pf9453_buck_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_BUCK4_VOLTAGE_NUM, .linear_ranges = pf9453_buck134_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_buck134_volts), .vsel_reg = PF9453_REG_BUCK4OUT, .vsel_mask = BUCK4OUT_MASK, .enable_reg = PF9453_REG_BUCK4CTRL, .enable_mask = BUCK4_ENMODE_MASK, .enable_val = BUCK_ENMODE_ONREQ, .owner = THIS_MODULE, }, }, { .desc = { .name = "ldo1", .of_match = of_match_ptr("LDO1"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_LDO1, .ops = &pf9453_ldo_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_LDO1_VOLTAGE_NUM, .linear_ranges = pf9453_ldo1_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_ldo1_volts), .vsel_reg = PF9453_REG_LDO1OUT_H, .vsel_mask = LDO1OUT_MASK, .enable_reg = PF9453_REG_LDO1CFG, .enable_mask = LDO1_EN_MASK, .enable_val = LDO_ENMODE_ONREQ, .owner = THIS_MODULE, }, }, { .desc = { .name = "ldo2", .of_match = of_match_ptr("LDO2"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_LDO2, .ops = &pf9453_ldo_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_LDO2_VOLTAGE_NUM, .linear_ranges = pf9453_ldo2_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_ldo2_volts), .vsel_reg = PF9453_REG_LDO2OUT, .vsel_mask = LDO2OUT_MASK, .enable_reg = PF9453_REG_LDO2CFG, .enable_mask = LDO2_EN_MASK, .enable_val = LDO_ENMODE_ONREQ, .owner = THIS_MODULE, }, }, { .desc = { .name = "ldosnvs", .of_match = of_match_ptr("LDO_SNVS"), .regulators_node = of_match_ptr("regulators"), .id = PF9453_LDOSNVS, .ops = &pf9453_ldo_regulator_ops, .type = REGULATOR_VOLTAGE, .n_voltages = PF9453_LDOSNVS_VOLTAGE_NUM, .linear_ranges = pf9453_ldosnvs_volts, .n_linear_ranges = ARRAY_SIZE(pf9453_ldosnvs_volts), .vsel_reg = PF9453_REG_LDOSNVS_CFG1, .vsel_mask = LDOSNVSCFG1_MASK, .enable_reg = PF9453_REG_LDOSNVS_CFG2, .enable_mask = LDOSNVS_EN_MASK, .owner = THIS_MODULE, }, }, }; static irqreturn_t pf9453_irq_handler(int irq, void *data) { struct pf9453 *pf9453 = data; struct regmap *regmap = pf9453->regmap; unsigned int status; int ret; ret = regmap_read(regmap, PF9453_REG_INT1, &status); if (ret < 0) { dev_err(pf9453->dev, "Failed to read INT1(%d)\n", ret); return IRQ_NONE; } if (status & IRQ_RSTB) dev_warn(pf9453->dev, "IRQ_RSTB interrupt.\n"); if (status & IRQ_ONKEY) dev_warn(pf9453->dev, "IRQ_ONKEY interrupt.\n"); if (status & IRQ_VR_FLT1) dev_warn(pf9453->dev, "VRFLT1 interrupt.\n"); if (status & IRQ_RESETKEY) dev_warn(pf9453->dev, "IRQ_RESETKEY interrupt.\n"); if (status & IRQ_LOWVSYS) dev_warn(pf9453->dev, "LOWVSYS interrupt.\n"); if (status & IRQ_THERM_100) dev_warn(pf9453->dev, "IRQ_THERM_100 interrupt.\n"); if (status & IRQ_THERM_80) dev_warn(pf9453->dev, "IRQ_THERM_80 interrupt.\n"); return IRQ_HANDLED; } static int pf9453_i2c_probe(struct i2c_client *i2c) { enum pf9453_chip_type type = (unsigned int)(uintptr_t) of_device_get_match_data(&i2c->dev); const struct pf9453_regulator_desc *regulator_desc; struct regulator_config config = { }; struct pf9453 *pf9453; unsigned int device_id, i; unsigned int reset_ctrl; int ret; if (!i2c->irq) { dev_err(&i2c->dev, "No IRQ configured?\n"); return -EINVAL; } pf9453 = devm_kzalloc(&i2c->dev, sizeof(struct pf9453), GFP_KERNEL); if (!pf9453) return -ENOMEM; pf9453->regmap = devm_regmap_init_i2c(i2c, &pf9453_regmap_config); if (IS_ERR(pf9453->regmap)) { dev_err(&i2c->dev, "regmap initialization failed\n"); return PTR_ERR(pf9453->regmap); } switch (type) { case PF9453_TYPE_PF9453: regulator_desc = pf9453_regulators; pf9453->rcnt = ARRAY_SIZE(pf9453_regulators); break; default: dev_err(&i2c->dev, "Unknown device type"); return -EINVAL; } pf9453->irq = i2c->irq; pf9453->type = type; pf9453->dev = &i2c->dev; dev_set_drvdata(&i2c->dev, pf9453); ret = regmap_read(pf9453->regmap, PF9453_REG_DEV_ID, &device_id); if (ret) { dev_err(&i2c->dev, "Read device id error\n"); return ret; } /* Check your board and dts for match the right pmic */ if ((device_id >> 4) != 0xB && type == PF9453_TYPE_PF9453) { dev_err(&i2c->dev, "Device id(%x) mismatched\n", device_id >> 4); return -EINVAL; } for (i = 0; i < pf9453->rcnt; i++) { const struct regulator_desc *desc; struct regulator_dev *rdev; const struct pf9453_regulator_desc *r; r = ®ulator_desc[i]; desc = &r->desc; config.regmap = pf9453->regmap; config.dev = pf9453->dev; rdev = devm_regulator_register(pf9453->dev, desc, &config); if (IS_ERR(rdev)) { ret = PTR_ERR(rdev); dev_err(pf9453->dev, "Failed to register regulator(%s): %d\n", desc->name, ret); return ret; } } ret = devm_request_threaded_irq(pf9453->dev, pf9453->irq, NULL, pf9453_irq_handler, (IRQF_TRIGGER_FALLING | IRQF_ONESHOT), "pf9453-irq", pf9453); if (ret != 0) { dev_err(pf9453->dev, "Failed to request IRQ: %d\n", pf9453->irq); return ret; } /* Unmask all interrupt except PWRON/WDOG/RSVD */ ret = pf9453_pmic_write(pf9453, PF9453_REG_INT1_MSK, IRQ_ONKEY | IRQ_RESETKEY | IRQ_RSTB | IRQ_VR_FLT1 | IRQ_LOWVSYS | IRQ_THERM_100 | IRQ_THERM_80, IRQ_RSVD); if (ret) { dev_err(&i2c->dev, "Unmask irq error\n"); return ret; } if (of_property_read_bool(i2c->dev.of_node, "nxp,wdog_b-warm-reset")) reset_ctrl = WDOG_B_CFG_WARM; else reset_ctrl = WDOG_B_CFG_COLD; /* Set reset behavior on assertion of WDOG_B signal */ ret = pf9453_pmic_write(pf9453, PF9453_REG_RESET_CTRL, WDOG_B_CFG_MASK, reset_ctrl); if (ret) { dev_err(&i2c->dev, "Failed to set WDOG_B reset behavior\n"); return ret; } /* * The driver uses the LDO1OUT_H register to control the LDO1 regulator. * This is only valid if the SD_VSEL input of the PMIC is high. Let's * check if the pin is available as GPIO and set it to high. */ pf9453->sd_vsel_gpio = gpiod_get_optional(pf9453->dev, "sd-vsel", GPIOD_OUT_HIGH); if (IS_ERR(pf9453->sd_vsel_gpio)) { dev_err(&i2c->dev, "Failed to get SD_VSEL GPIO\n"); return PTR_ERR(pf9453->sd_vsel_gpio); } dev_info(&i2c->dev, "%s probed.\n", type == PF9453_TYPE_PF9453 ? "pf9453" : "unknown pmic"); return 0; } static const struct of_device_id pf9453_of_match[] = { { .compatible = "nxp,pf9453", .data = (void *)PF9453_TYPE_PF9453, }, { } }; MODULE_DEVICE_TABLE(of, pf9453_of_match); static struct i2c_driver pf9453_i2c_driver = { .driver = { .name = "nxp-pf9453", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = pf9453_of_match, }, .probe = pf9453_i2c_probe, }; module_i2c_driver(pf9453_i2c_driver); MODULE_AUTHOR("Joy Zou "); MODULE_DESCRIPTION("NXP PF9453 Power Management IC driver"); MODULE_LICENSE("GPL");