linux-imx/drivers/regulator/pf0900-regulator.c
Joy Zou fb255cf92e LF-11360: regulator: pf0900: fix coverity uninitialized scalar variable issue
add variable initialization.

Signed-off-by: Joy Zou <joy.zou@nxp.com>
Reviewed-by: Jacky Bai <ping.bai@nxp.com>
Acked-by: Jason Liu <jason.hui.liu@nxp.com>
2024-01-24 20:05:04 +08:00

1030 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2023 NXP.
* NXP PF0900 pmic driver
*/
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/pf0900.h>
#include <linux/crc8.h>
struct pf0900_dvs_config {
unsigned int run_reg;
unsigned int run_mask;
unsigned int standby_reg;
unsigned int standby_mask;
};
struct pf0900_regulator_desc {
struct regulator_desc desc;
const struct pf0900_dvs_config dvs;
};
struct pf0900 {
struct device *dev;
struct regmap *regmap;
enum pf0900_chip_type type;
unsigned int rcnt;
int irq;
unsigned short addr;
bool crc_en;
};
static const struct regmap_range pf0900_range = {
.range_min = PF0900_REG_DEV_ID,
.range_max = PF0900_REG_SYS_DIAG,
};
static const struct regmap_access_table pf0900_volatile_regs = {
.yes_ranges = &pf0900_range,
.n_yes_ranges = 1,
};
static const struct regmap_config pf0900_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &pf0900_volatile_regs,
.max_register = PF0900_MAX_REGISTER - 1,
.cache_type = REGCACHE_RBTREE,
};
static uint8_t crc8_j1850(uint8_t *data, uint8_t length)
{
uint8_t t_crc;
uint8_t i, j;
t_crc = 0xFF;
for (i = 0; i < length; i++) {
t_crc ^= data[i];
for (j = 0; j < 8; j++) {
if ((t_crc & 0x80) != 0) {
t_crc <<= 1;
t_crc ^= 0x1D;
} else {
t_crc <<= 1;
}
}
}
return t_crc;
}
static int pf0900_pmic_read(struct pf0900 *pf0900, unsigned int reg,
unsigned int *val)
{
u8 crcBuf[3];
u8 data[2], crc;
int ret;
if (reg < PF0900_MAX_REGISTER) {
ret = regmap_raw_read(pf0900->regmap, reg, data,
pf0900->crc_en ? 2U : 1U);
if (ret)
return ret;
*val = data[0];
if (pf0900->crc_en) {
/* Get CRC */
crcBuf[0] = pf0900->addr << 1U | 0x1U;
crcBuf[1] = reg;
crcBuf[2] = data[0];
crc = crc8_j1850(crcBuf, 3U);
if (crc != data[1])
return -EINVAL;
} else {
return ret;
}
} else {
return -EINVAL;
}
return ret;
}
static int pf0900_pmic_write(struct pf0900 *pf0900, unsigned int reg,
unsigned int val, uint8_t mask)
{
uint8_t crcBuf[3];
uint8_t data[2];
unsigned int rxBuf;
int ret = -EINVAL;
/* If not updating entire register, perform a read-mod-write */
data[0] = val;
if (mask != 0xFFU) {
/* Read data */
ret = pf0900_pmic_read(pf0900, reg, &rxBuf);
if (ret) {
dev_err(pf0900->dev, "Read reg=%0x error!\n", reg);
return ret;
}
data[0] = (val & mask) | (rxBuf & (~mask));
}
if (reg < PF0900_MAX_REGISTER) {
if (pf0900->crc_en) {
/* Get CRC */
crcBuf[0] = pf0900->addr << 1U;
crcBuf[1] = reg;
crcBuf[2] = data[0];
data[1] = crc8_j1850(crcBuf, 3U);
}
/* Write data */
ret = regmap_raw_write(pf0900->regmap, reg, data,
pf0900->crc_en ? 2U : 1U);
if (ret) {
dev_err(pf0900->dev, "Write reg=%0x error!\n", reg);
return ret;
}
}
return ret;
}
/**
* pf0900_regulator_enable_regmap for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their enable() operation, saving some code.
*/
static int pf0900_regulator_enable_regmap(struct regulator_dev *rdev)
{
unsigned int val;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
if (rdev->desc->enable_is_inverted) {
val = rdev->desc->disable_val;
} else {
val = rdev->desc->enable_val;
if (!val)
val = rdev->desc->enable_mask;
}
return pf0900_pmic_write(pf0900, rdev->desc->enable_reg, val,
rdev->desc->enable_mask);
}
/**
* pf0900_regulator_disable_regmap for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their disable() operation, saving some code.
*/
static int pf0900_regulator_disable_regmap(struct regulator_dev *rdev)
{
unsigned int val;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
if (rdev->desc->enable_is_inverted) {
val = rdev->desc->enable_val;
if (!val)
val = rdev->desc->enable_mask;
} else {
val = rdev->desc->disable_val;
}
return pf0900_pmic_write(pf0900, rdev->desc->enable_reg, val,
rdev->desc->enable_mask);
}
/**
* pf0900_regulator_is_enabled_regmap for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* enable_reg and enable_mask fields in their descriptor and then use
* this as their is_enabled operation, saving some code.
*/
int pf0900_regulator_is_enabled_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
ret = pf0900_pmic_read(pf0900, rdev->desc->enable_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->enable_mask;
if (rdev->desc->enable_is_inverted) {
if (rdev->desc->enable_val)
return val != rdev->desc->enable_val;
return val == 0;
} else {
if (rdev->desc->enable_val)
return val == rdev->desc->enable_val;
return val != 0;
}
}
/**
* pf0900_regulator_set_voltage_sel_regmap for regmap users
*
* @rdev: regulator to operate on
* @sel: Selector to set
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their set_voltage_vsel operation, saving some code.
*/
static int pf0900_regulator_set_voltage_sel_regmap(struct regulator_dev *rdev,
unsigned int sel)
{
int ret;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
sel <<= ffs(rdev->desc->vsel_mask) - 1;
ret = pf0900_pmic_write(pf0900, rdev->desc->vsel_reg, sel,
rdev->desc->vsel_mask);
if (ret)
return ret;
if (rdev->desc->apply_bit)
ret = pf0900_pmic_write(pf0900, rdev->desc->apply_reg,
rdev->desc->apply_bit,
rdev->desc->apply_bit);
return ret;
}
static int find_closest_bigger(unsigned int target, const unsigned int *table,
unsigned int num_sel, unsigned int *sel)
{
unsigned int s, tmp, max, maxsel = 0;
bool found = false;
max = table[0];
for (s = 0; s < num_sel; s++) {
if (table[s] > max) {
max = table[s];
maxsel = s;
}
if (table[s] >= target) {
if (!found || table[s] - target < tmp - target) {
tmp = table[s];
*sel = s;
found = true;
if (tmp == target)
break;
}
}
}
if (!found) {
*sel = maxsel;
return -EINVAL;
}
return 0;
}
/**
* pf0900_regulator_set_ramp_delay_regmap
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the ramp_reg
* and ramp_mask fields in their descriptor and then use this as their
* set_ramp_delay operation, saving some code.
*/
int pf0900_regulator_set_ramp_delay_regmap(struct regulator_dev *rdev,
int ramp_delay)
{
int ret;
unsigned int sel;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
return -EINVAL;
ret = find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
rdev->desc->n_ramp_values, &sel);
if (ret) {
dev_warn(rdev_get_dev(rdev),
"Can't set ramp-delay %u, setting %u\n", ramp_delay,
rdev->desc->ramp_delay_table[sel]);
}
sel <<= ffs(rdev->desc->ramp_mask) - 1;
return pf0900_pmic_write(pf0900, rdev->desc->ramp_reg, sel,
rdev->desc->ramp_mask);
}
/**
* pf0900_regulator_get_voltage_sel_regmap for regmap users
*
* @rdev: regulator to operate on
*
* Regulators that use regmap for their register I/O can set the
* vsel_reg and vsel_mask fields in their descriptor and then use this
* as their get_voltage_vsel operation, saving some code.
*/
int pf0900_regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{
unsigned int val;
int ret;
struct pf0900 *pf0900 = dev_get_drvdata(rdev->dev.parent);
ret = pf0900_pmic_read(pf0900, rdev->desc->vsel_reg, &val);
if (ret != 0)
return ret;
val &= rdev->desc->vsel_mask;
val >>= ffs(rdev->desc->vsel_mask) - 1;
return val;
}
static const struct regulator_ops pf0900_avon_regulator_ops = {
.list_voltage = regulator_list_voltage_table,
.set_voltage_sel = pf0900_regulator_set_voltage_sel_regmap,
.get_voltage_sel = pf0900_regulator_get_voltage_sel_regmap,
};
static const struct regulator_ops pf0900_dvs_sw_regulator_ops = {
.enable = pf0900_regulator_enable_regmap,
.disable = pf0900_regulator_disable_regmap,
.is_enabled = pf0900_regulator_is_enabled_regmap,
.list_voltage = regulator_list_voltage_linear_range,
.set_voltage_sel = pf0900_regulator_set_voltage_sel_regmap,
.get_voltage_sel = pf0900_regulator_get_voltage_sel_regmap,
.set_voltage_time_sel = regulator_set_voltage_time_sel,
.set_ramp_delay = pf0900_regulator_set_ramp_delay_regmap,
};
static const struct regulator_ops pf0900_ldo_regulator_ops = {
.enable = pf0900_regulator_enable_regmap,
.disable = pf0900_regulator_disable_regmap,
.is_enabled = pf0900_regulator_is_enabled_regmap,
.list_voltage = regulator_list_voltage_linear_range,
.set_voltage_sel = pf0900_regulator_set_voltage_sel_regmap,
.get_voltage_sel = pf0900_regulator_get_voltage_sel_regmap,
};
/*
* SW1/2/3/4/5
* SW1_DVS[1:0] SW1 DVS ramp rate setting
* 00: 15.6mV/8usec
* 01: 15.6mV/4usec
* 10: 15.6mV/2usec
* 11: 15.6mV/1usec
*/
static const unsigned int pf0900_dvs_sw_ramp_table[] = {
1950, 3900, 7800, 15600
};
/* VAON 1.8V, 3.0V, or 3.3V */
static const int pf0900_vaon_voltages[] = {
0, 1800000, 3000000, 3300000,
};
/*
* SW1 0.5V to 3.3V
* 0.5V to 1.35V (6.25mV step)
* 1.8V to 2.5V (125mV step)
* 2.8V to 3.3V (250mV step)
*/
static const struct linear_range pf0900_dvs_sw1_volts[] = {
REGULATOR_LINEAR_RANGE(0, 0x00, 0x08, 0),
REGULATOR_LINEAR_RANGE(500000, 0x09, 0x91, 6250),
REGULATOR_LINEAR_RANGE(0, 0x92, 0x9E, 0),
REGULATOR_LINEAR_RANGE(1500000, 0x9F, 0x9F, 0),
REGULATOR_LINEAR_RANGE(1800000, 0xA0, 0xD8, 12500),
REGULATOR_LINEAR_RANGE(0, 0xD9, 0xDF, 0),
REGULATOR_LINEAR_RANGE(2800000, 0xE0, 0xF4, 25000),
REGULATOR_LINEAR_RANGE(0, 0xF5, 0xFF, 0),
};
/*
* SW2/3/4/5 0.3V to 3.3V
* 0.45V to 1.35V (6.25mV step)
* 1.8V to 2.5V (125mV step)
* 2.8V to 3.3V (250mV step)
*/
static const struct linear_range pf0900_dvs_sw2345_volts[] = {
REGULATOR_LINEAR_RANGE(300000, 0x00, 0x00, 0),
REGULATOR_LINEAR_RANGE(450000, 0x01, 0x91, 6250),
REGULATOR_LINEAR_RANGE(0, 0x92, 0x9E, 0),
REGULATOR_LINEAR_RANGE(1500000, 0x9F, 0x9F, 0),
REGULATOR_LINEAR_RANGE(1800000, 0xA0, 0xD8, 12500),
REGULATOR_LINEAR_RANGE(0, 0xD9, 0xDF, 0),
REGULATOR_LINEAR_RANGE(2800000, 0xE0, 0xF4, 25000),
REGULATOR_LINEAR_RANGE(0, 0xF5, 0xFF, 0),
};
/*
* LDO1
* 0.75V to 3.3V
*/
static const struct linear_range pf0900_ldo1_volts[] = {
REGULATOR_LINEAR_RANGE(750000, 0x00, 0x0F, 50000),
REGULATOR_LINEAR_RANGE(1800000, 0x10, 0x1F, 100000),
};
/*
* LDO2/3
* 0.65V to 3.3V (50mV step)
*/
static const struct linear_range pf0900_ldo23_volts[] = {
REGULATOR_LINEAR_RANGE(650000, 0x00, 0x0D, 50000),
REGULATOR_LINEAR_RANGE(1400000, 0x0E, 0x0F, 100000),
REGULATOR_LINEAR_RANGE(1800000, 0x10, 0x1F, 100000),
};
/* SW1 dvs 0.5v to 1.35v
* SW2-5 dvs 0.3v to 1.35v
*/
static int sw_set_dvs(const struct regulator_desc *desc, struct pf0900 *pf0900,
struct device_node *np, char *prop, unsigned int reg,
unsigned int mask)
{
int ret, i;
uint32_t uv;
ret = of_property_read_u32(np, prop, &uv);
if (ret == -EINVAL)
return 0;
else if (ret)
return ret;
for (i = 0; i < desc->n_voltages; i++) {
ret = regulator_desc_list_voltage_linear_range(desc, i);
if (ret < 0)
continue;
if (ret == uv) {
i <<= ffs(desc->vsel_mask) - 1;
ret = pf0900_pmic_write(pf0900, reg, i, mask);
break;
}
}
return ret;
}
static int pf0900_set_dvs_levels(struct device_node *np,
const struct regulator_desc *desc,
struct regulator_config *cfg)
{
struct pf0900_regulator_desc *data = container_of(desc,
struct pf0900_regulator_desc, desc);
const struct pf0900_dvs_config *dvs = &data->dvs;
struct pf0900 *pf0900 = dev_get_drvdata(cfg->dev);
unsigned int reg, mask;
char *prop;
int i, ret = 0;
for (i = 0; i < PF0900_DVS_LEVEL_MAX; i++) {
switch (i) {
case PF0900_DVS_LEVEL_RUN:
prop = "nxp,dvs-run-voltage";
reg = dvs->run_reg;
mask = dvs->run_mask;
break;
case PF0900_DVS_LEVEL_STANDBY:
prop = "nxp,dvs-standby-voltage";
reg = dvs->standby_reg;
mask = dvs->standby_mask;
break;
default:
return -EINVAL;
}
ret = sw_set_dvs(desc, pf0900, np, prop, reg, mask);
if (ret)
break;
}
return ret;
}
static const struct pf0900_regulator_desc pf0900_regulators[] = {
{
.desc = {
.name = "vaon",
.of_match = of_match_ptr("VAON"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_VAON,
.ops = &pf0900_avon_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_VAON_VOLTAGE_NUM,
.volt_table = pf0900_vaon_voltages,
.enable_reg = PF0900_REG_VAON_CFG1,
.enable_mask = VAON_MASK,
.enable_val = VAON_1P8V,
.vsel_reg = PF0900_REG_VAON_CFG1,
.vsel_mask = VAON_MASK,
.owner = THIS_MODULE,
},
},
{
.desc = {
.name = "sw1",
.of_match = of_match_ptr("SW1"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_SW1,
.ops = &pf0900_dvs_sw_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_SW1_VOLTAGE_NUM,
.linear_ranges = pf0900_dvs_sw1_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_dvs_sw1_volts),
.vsel_reg = PF0900_REG_SW1_VRUN,
.vsel_mask = SW_VRUN_MASK,
.enable_reg = PF0900_REG_SW1_MODE,
.enable_mask = SW_RUN_MODE_MASK,
.enable_val = SW_RUN_MODE_PWM,
.ramp_reg = PF0900_REG_SW1_CFG1,
.ramp_mask = SW_RAMP_MASK,
.ramp_delay_table = pf0900_dvs_sw_ramp_table,
.n_ramp_values = ARRAY_SIZE(pf0900_dvs_sw_ramp_table),
.owner = THIS_MODULE,
.of_parse_cb = pf0900_set_dvs_levels,
},
.dvs = {
.run_reg = PF0900_REG_SW1_VRUN,
.run_mask = SW_VRUN_MASK,
.standby_reg = PF0900_REG_SW1_VSTBY,
.standby_mask = SW_STBY_MASK,
},
},
{
.desc = {
.name = "sw2",
.of_match = of_match_ptr("SW2"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_SW2,
.ops = &pf0900_dvs_sw_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_SW2_VOLTAGE_NUM,
.linear_ranges = pf0900_dvs_sw2345_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_dvs_sw2345_volts),
.vsel_reg = PF0900_REG_SW2_VRUN,
.vsel_mask = SW_VRUN_MASK,
.enable_reg = PF0900_REG_SW2_MODE,
.enable_mask = SW_RUN_MODE_MASK,
.enable_val = SW_RUN_MODE_PWM,
.ramp_reg = PF0900_REG_SW2_CFG1,
.ramp_mask = SW_RAMP_MASK,
.ramp_delay_table = pf0900_dvs_sw_ramp_table,
.n_ramp_values = ARRAY_SIZE(pf0900_dvs_sw_ramp_table),
.owner = THIS_MODULE,
.of_parse_cb = pf0900_set_dvs_levels,
},
.dvs = {
.run_reg = PF0900_REG_SW2_VRUN,
.run_mask = SW_VRUN_MASK,
.standby_reg = PF0900_REG_SW2_VSTBY,
.standby_mask = SW_STBY_MASK,
},
},
{
.desc = {
.name = "sw3",
.of_match = of_match_ptr("SW3"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_SW3,
.ops = &pf0900_dvs_sw_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_SW3_VOLTAGE_NUM,
.linear_ranges = pf0900_dvs_sw2345_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_dvs_sw2345_volts),
.vsel_reg = PF0900_REG_SW3_VRUN,
.vsel_mask = SW_VRUN_MASK,
.enable_reg = PF0900_REG_SW3_MODE,
.enable_mask = SW_RUN_MODE_MASK,
.enable_val = SW_RUN_MODE_PWM,
.ramp_reg = PF0900_REG_SW3_CFG1,
.ramp_mask = SW_RAMP_MASK,
.ramp_delay_table = pf0900_dvs_sw_ramp_table,
.n_ramp_values = ARRAY_SIZE(pf0900_dvs_sw_ramp_table),
.owner = THIS_MODULE,
.of_parse_cb = pf0900_set_dvs_levels,
},
.dvs = {
.run_reg = PF0900_REG_SW3_VRUN,
.run_mask = SW_VRUN_MASK,
.standby_reg = PF0900_REG_SW3_VSTBY,
.standby_mask = SW_STBY_MASK,
},
},
{
.desc = {
.name = "sw4",
.of_match = of_match_ptr("SW4"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_SW5,
.ops = &pf0900_dvs_sw_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_SW4_VOLTAGE_NUM,
.linear_ranges = pf0900_dvs_sw2345_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_dvs_sw2345_volts),
.vsel_reg = PF0900_REG_SW4_VRUN,
.vsel_mask = SW_VRUN_MASK,
.enable_reg = PF0900_REG_SW4_MODE,
.enable_mask = SW_RUN_MODE_MASK,
.enable_val = SW_RUN_MODE_PWM,
.ramp_reg = PF0900_REG_SW4_CFG1,
.ramp_mask = SW_RAMP_MASK,
.ramp_delay_table = pf0900_dvs_sw_ramp_table,
.n_ramp_values = ARRAY_SIZE(pf0900_dvs_sw_ramp_table),
.owner = THIS_MODULE,
.of_parse_cb = pf0900_set_dvs_levels,
},
.dvs = {
.run_reg = PF0900_REG_SW4_VRUN,
.run_mask = SW_VRUN_MASK,
.standby_reg = PF0900_REG_SW4_VSTBY,
.standby_mask = SW_STBY_MASK,
},
},
{
.desc = {
.name = "sw5",
.of_match = of_match_ptr("SW5"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_SW5,
.ops = &pf0900_dvs_sw_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_SW5_VOLTAGE_NUM,
.linear_ranges = pf0900_dvs_sw2345_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_dvs_sw2345_volts),
.vsel_reg = PF0900_REG_SW5_VRUN,
.vsel_mask = SW_VRUN_MASK,
.enable_reg = PF0900_REG_SW5_MODE,
.enable_mask = SW_RUN_MODE_MASK,
.enable_val = SW_RUN_MODE_PWM,
.ramp_reg = PF0900_REG_SW5_CFG1,
.ramp_mask = SW_RAMP_MASK,
.ramp_delay_table = pf0900_dvs_sw_ramp_table,
.n_ramp_values = ARRAY_SIZE(pf0900_dvs_sw_ramp_table),
.owner = THIS_MODULE,
.of_parse_cb = pf0900_set_dvs_levels,
},
.dvs = {
.run_reg = PF0900_REG_SW5_VRUN,
.run_mask = SW_VRUN_MASK,
.standby_reg = PF0900_REG_SW5_VSTBY,
.standby_mask = SW_STBY_MASK,
},
},
{
.desc = {
.name = "ldo1",
.of_match = of_match_ptr("LDO1"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_LDO1,
.ops = &pf0900_ldo_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_LDO1_VOLTAGE_NUM,
.linear_ranges = pf0900_ldo1_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_ldo1_volts),
.vsel_reg = PF0900_REG_LDO1_RUN,
.vsel_mask = VLDO1_RUN_MASK,
.enable_reg = PF0900_REG_LDO1_RUN,
.enable_mask = LDO1_RUN_EN_MASK,
.owner = THIS_MODULE,
},
},
{
.desc = {
.name = "ldo2",
.of_match = of_match_ptr("LDO2"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_LDO2,
.ops = &pf0900_ldo_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_LDO2_VOLTAGE_NUM,
.linear_ranges = pf0900_ldo23_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_ldo23_volts),
.vsel_reg = PF0900_REG_LDO2_RUN,
.vsel_mask = VLDO2_RUN_MASK,
.enable_reg = PF0900_REG_LDO2_RUN,
.enable_mask = LDO2_RUN_EN_MASK,
.owner = THIS_MODULE,
},
},
{
.desc = {
.name = "ldo3",
.of_match = of_match_ptr("LDO3"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_LDO3,
.ops = &pf0900_ldo_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_LDO3_VOLTAGE_NUM,
.linear_ranges = pf0900_ldo23_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_ldo23_volts),
.vsel_reg = PF0900_REG_LDO3_RUN,
.vsel_mask = VLDO3_RUN_MASK,
.enable_reg = PF0900_REG_LDO3_RUN,
.enable_mask = LDO3_RUN_EN_MASK,
.owner = THIS_MODULE,
},
},
{
.desc = {
.name = "ldo3_stby",
.of_match = of_match_ptr("LDO3"),
.regulators_node = of_match_ptr("regulators"),
.id = PF0900_LDO3,
.ops = &pf0900_ldo_regulator_ops,
.type = REGULATOR_VOLTAGE,
.n_voltages = PF0900_LDO3_VOLTAGE_NUM,
.linear_ranges = pf0900_ldo23_volts,
.n_linear_ranges = ARRAY_SIZE(pf0900_ldo23_volts),
.vsel_reg = PF0900_REG_LDO3_RUN,
.vsel_mask = VLDO3_RUN_MASK,
.enable_reg = PF0900_REG_LDO3_STBY,
.enable_mask = LDO3_STBY_EN_MASK,
.owner = THIS_MODULE,
},
},
};
static irqreturn_t pf0900_irq_handler(int irq, void *data)
{
struct pf0900 *pf0900 = data;
unsigned int system, status1, status2, status3;
int ret;
ret = pf0900_pmic_read(pf0900, PF0900_REG_SYSTEM_INT, &system);
if (ret < 0) {
dev_err(pf0900->dev,
"Failed to read SYSTEM_INT(%d)\n", ret);
return IRQ_NONE;
}
ret = pf0900_pmic_read(pf0900, PF0900_REG_STATUS1_INT, &status1);
if (ret < 0) {
dev_err(pf0900->dev,
"Failed to read STATUS1_INT(%d)\n", ret);
return IRQ_NONE;
}
ret = pf0900_pmic_read(pf0900, PF0900_REG_STATUS2_INT, &status2);
if (ret < 0) {
dev_err(pf0900->dev,
"Failed to read STATUS2_INT(%d)\n", ret);
return IRQ_NONE;
}
ret = pf0900_pmic_read(pf0900, PF0900_REG_STATUS3_INT, &status3);
if (ret < 0) {
dev_err(pf0900->dev,
"Failed to read STATUS3_INT(%d)\n", ret);
return IRQ_NONE;
}
if (system & IRQ_EWARN)
dev_warn(pf0900->dev, "EWARN interrupt.\n");
if (system & IRQ_GPIO)
dev_warn(pf0900->dev, "GPIO interrupt.\n");
if (system & IRQ_OV)
dev_warn(pf0900->dev, "OV interrupt.\n");
if (system & IRQ_UV)
dev_warn(pf0900->dev, "UV interrupt.\n");
if (system & IRQ_ILIM)
dev_warn(pf0900->dev, "ILIM interrupt.\n");
if (system & IRQ_MODE)
dev_warn(pf0900->dev, "IRQ_MODE interrupt.\n");
if (system & status1 & IRQ_SDWN)
dev_warn(pf0900->dev, "IRQ_SDWN interrupt.\n");
if (system & status1 & IRQ_FREQ_RDY)
dev_warn(pf0900->dev, "IRQ_FREQ_RDY interrupt.\n");
if (system & status1 & IRQ_DCRC)
dev_warn(pf0900->dev, "IRQ_DCRC interrupt.\n");
if (system & status1 & IRQ_I2C_CRC)
dev_warn(pf0900->dev, "IRQ_I2C_CRC interrupt.\n");
if (system & status1 & IRQ_PWRDN)
dev_warn(pf0900->dev, "IRQ_PWRDN interrupt.\n");
if (system & status1 & IRQ_FSYNC_FLT)
dev_warn(pf0900->dev, "IRQ_FSYNC_FLT interrupt.\n");
if (system & status1 & IRQ_VIN_OV)
dev_warn(pf0900->dev, "IRQ_VIN_OV interrupt.\n");
if (system & status2 & IRQ_VANA_OV)
dev_warn(pf0900->dev, "IRQ_VANA_OV interrupt.\n");
if (system & status2 & IRQ_VDIG_OV)
dev_warn(pf0900->dev, "IRQ_VDIG_OV interrupt.\n");
if (system & status2 & IRQ_THERM_155)
dev_warn(pf0900->dev, "IRQ_THERM_155 interrupt.\n");
if (system & status2 & IRQ_THERM_140)
dev_warn(pf0900->dev, "IRQ_THERM_140 interrupt.\n");
if (system & status2 & IRQ_THERM_125)
dev_warn(pf0900->dev, "IRQ_THERM_125 interrupt.\n");
if (system & status2 & IRQ_THERM_110)
dev_warn(pf0900->dev, "IRQ_THERM_110 interrupt.\n");
if (system & status3 & IRQ_BAD_CMD)
dev_warn(pf0900->dev, "IRQ_BAD_CMD interrupt.\n");
if (system & status3 & IRQ_LBIST_DONE)
dev_warn(pf0900->dev, "IRQ_LBIST_DONE interrupt.\n");
if (system & status3 & IRQ_SHS)
dev_warn(pf0900->dev, "IRQ_SHS interrupt.\n");
return IRQ_HANDLED;
}
static int pf0900_i2c_probe(struct i2c_client *i2c)
{
enum pf0900_chip_type type = (unsigned int)(uintptr_t)
of_device_get_match_data(&i2c->dev);
const struct pf0900_regulator_desc *regulator_desc;
struct regulator_config config = { };
struct pf0900 *pf0900;
unsigned int device_id, device_fam, i;
int ret;
bool ldo3_stby;
struct device_node *np = i2c->dev.of_node;
if (!i2c->irq) {
dev_err(&i2c->dev, "No IRQ configured?\n");
return -EINVAL;
}
pf0900 = devm_kzalloc(&i2c->dev, sizeof(struct pf0900), GFP_KERNEL);
if (!pf0900)
return -ENOMEM;
switch (type) {
case PF0900_TYPE_PF0900:
regulator_desc = pf0900_regulators;
pf0900->rcnt = ARRAY_SIZE(pf0900_regulators);
break;
default:
dev_err(&i2c->dev, "Unknown device type");
return -EINVAL;
}
ldo3_stby = of_property_read_bool(np, "ldo3-stby");
if (of_property_read_bool(np, "i2c-crc-enable"))
pf0900->crc_en = true;
pf0900->irq = i2c->irq;
pf0900->type = type;
pf0900->dev = &i2c->dev;
pf0900->addr = i2c->addr;
dev_set_drvdata(&i2c->dev, pf0900);
pf0900->regmap = devm_regmap_init_i2c(i2c,
&pf0900_regmap_config);
if (IS_ERR(pf0900->regmap)) {
dev_err(&i2c->dev, "regmap initialization failed\n");
return PTR_ERR(pf0900->regmap);
}
ret = pf0900_pmic_read(pf0900, PF0900_REG_DEV_ID, &device_id);
if (ret) {
dev_err(&i2c->dev, "Read device id error\n");
return ret;
}
ret = pf0900_pmic_read(pf0900, PF0900_REG_DEV_FAM, &device_fam);
if (ret) {
dev_err(&i2c->dev, "Read device fam error\n");
return ret;
}
/* Check your board and dts for match the right pmic */
if (device_fam == 0x09 && (device_id & 0x1F) != 0x0 &&
type == PF0900_TYPE_PF0900) {
dev_err(&i2c->dev, "Device id(%x) mismatched\n",
device_id >> 4);
return -EINVAL;
}
for (i = 0; i < pf0900->rcnt; i++) {
const struct regulator_desc *desc;
struct regulator_dev *rdev;
const struct pf0900_regulator_desc *r;
if (!strcmp(regulator_desc[i].desc.name, "ldo3") && ldo3_stby) {
r = &regulator_desc[i + 1];
i = i + 1;
} else if (!strcmp(regulator_desc[i].desc.name, "ldo3")) {
r = &regulator_desc[i];
i = i + 1;
} else {
r = &regulator_desc[i];
}
desc = &r->desc;
config.regmap = pf0900->regmap;
config.dev = pf0900->dev;
rdev = devm_regulator_register(pf0900->dev, desc, &config);
if (IS_ERR(rdev)) {
ret = PTR_ERR(rdev);
dev_err(pf0900->dev,
"Failed to register regulator(%s): %d\n",
desc->name, ret);
return ret;
}
}
ret = devm_request_threaded_irq(pf0900->dev, pf0900->irq, NULL,
pf0900_irq_handler,
(IRQF_TRIGGER_FALLING | IRQF_ONESHOT),
"pf0900-irq", pf0900);
if (ret != 0) {
dev_err(pf0900->dev, "Failed to request IRQ: %d\n",
pf0900->irq);
return ret;
}
/* Unmask all interrupt except PWRUP */
ret = pf0900_pmic_write(pf0900, PF0900_REG_STATUS1_MSK, IRQ_PWRUP,
IRQ_SDWN | IRQ_FREQ_RDY | IRQ_DCRC |
IRQ_I2C_CRC | IRQ_PWRDN | IRQ_FSYNC_FLT |
IRQ_VIN_OV);
if (ret) {
dev_err(&i2c->dev, "Unmask irq error\n");
return ret;
}
/* Unmask all interrupt except BGMON/CLKMON */
ret = pf0900_pmic_write(pf0900, PF0900_REG_STATUS2_MSK, IRQ_BGMON | IRQ_CLKMON,
IRQ_VANA_OV | IRQ_VDIG_OV | IRQ_THERM_155 |
IRQ_THERM_140 | IRQ_THERM_125 | IRQ_THERM_110);
if (ret) {
dev_err(&i2c->dev, "Unmask irq error\n");
return ret;
}
ret = pf0900_pmic_write(pf0900, PF0900_REG_STATUS3_MSK, 0,
IRQ_BAD_CMD | IRQ_LBIST_DONE | IRQ_SHS);
if (ret) {
dev_err(&i2c->dev, "Unmask irq error\n");
return ret;
}
dev_err(&i2c->dev, "%s probed.\n",
type == PF0900_TYPE_PF0900 ? "pf0900" : "unknown type");
return 0;
}
static const struct of_device_id pf0900_of_match[] = {
{
.compatible = "nxp,pf0900",
.data = (void *)PF0900_TYPE_PF0900,
},
{ }
};
MODULE_DEVICE_TABLE(of, pf0900_of_match);
static struct i2c_driver pf0900_i2c_driver = {
.driver = {
.name = "nxp-pf0900",
.of_match_table = pf0900_of_match,
},
.probe = pf0900_i2c_probe,
};
module_i2c_driver(pf0900_i2c_driver);
MODULE_AUTHOR("Joy Zou <joy.zou@nxp.com>");
MODULE_DESCRIPTION("NXP PF0900 Power Management IC driver");
MODULE_LICENSE("GPL");