linux-imx/drivers/tee/optee/call.c
Silvano di Ninno 2eded75c3e MLK-21698: tee:optee: fix shared memory page attribute checks
When allocating pages for share memory with OP-TEE,
the driver checks the page attribute (pte).
The current checks only allow writealloc pages.
i.MX 6SLL sets the page attribute to writeback.
Relax this check to allow writealloc, writeback and writethrough.

Signed-off-by: Silvano di Ninno <silvano.dininno@nxp.com>
Reviewed-by: Franck Lenormand <franck.lenormand@nxp.com>
Reviewed-by: Horia Geanta <horia.geanta@nxp.com>
Acked-by: Leonard Crestez <leonard.crestez@nxp.com>
(cherry picked from commit a4c5efa2df07a54ce112206c3ffc8fccf3369c52)
2023-10-30 16:25:17 +08:00

529 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2021, Linaro Limited
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/tee_drv.h>
#include <linux/types.h>
#include "optee_private.h"
#define MAX_ARG_PARAM_COUNT 6
/*
* How much memory we allocate for each entry. This doesn't have to be a
* single page, but it makes sense to keep at least keep it as multiples of
* the page size.
*/
#define SHM_ENTRY_SIZE PAGE_SIZE
/*
* We need to have a compile time constant to be able to determine the
* maximum needed size of the bit field.
*/
#define MIN_ARG_SIZE OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
#define MAX_ARG_COUNT_PER_ENTRY (SHM_ENTRY_SIZE / MIN_ARG_SIZE)
/*
* Shared memory for argument structs are cached here. The number of
* arguments structs that can fit is determined at runtime depending on the
* needed RPC parameter count reported by secure world
* (optee->rpc_param_count).
*/
struct optee_shm_arg_entry {
struct list_head list_node;
struct tee_shm *shm;
DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
};
void optee_cq_wait_init(struct optee_call_queue *cq,
struct optee_call_waiter *w)
{
/*
* We're preparing to make a call to secure world. In case we can't
* allocate a thread in secure world we'll end up waiting in
* optee_cq_wait_for_completion().
*
* Normally if there's no contention in secure world the call will
* complete and we can cleanup directly with optee_cq_wait_final().
*/
mutex_lock(&cq->mutex);
/*
* We add ourselves to the queue, but we don't wait. This
* guarantees that we don't lose a completion if secure world
* returns busy and another thread just exited and try to complete
* someone.
*/
init_completion(&w->c);
list_add_tail(&w->list_node, &cq->waiters);
mutex_unlock(&cq->mutex);
}
void optee_cq_wait_for_completion(struct optee_call_queue *cq,
struct optee_call_waiter *w)
{
wait_for_completion(&w->c);
mutex_lock(&cq->mutex);
/* Move to end of list to get out of the way for other waiters */
list_del(&w->list_node);
reinit_completion(&w->c);
list_add_tail(&w->list_node, &cq->waiters);
mutex_unlock(&cq->mutex);
}
static void optee_cq_complete_one(struct optee_call_queue *cq)
{
struct optee_call_waiter *w;
list_for_each_entry(w, &cq->waiters, list_node) {
if (!completion_done(&w->c)) {
complete(&w->c);
break;
}
}
}
void optee_cq_wait_final(struct optee_call_queue *cq,
struct optee_call_waiter *w)
{
/*
* We're done with the call to secure world. The thread in secure
* world that was used for this call is now available for some
* other task to use.
*/
mutex_lock(&cq->mutex);
/* Get out of the list */
list_del(&w->list_node);
/* Wake up one eventual waiting task */
optee_cq_complete_one(cq);
/*
* If we're completed we've got a completion from another task that
* was just done with its call to secure world. Since yet another
* thread now is available in secure world wake up another eventual
* waiting task.
*/
if (completion_done(&w->c))
optee_cq_complete_one(cq);
mutex_unlock(&cq->mutex);
}
/* Requires the filpstate mutex to be held */
static struct optee_session *find_session(struct optee_context_data *ctxdata,
u32 session_id)
{
struct optee_session *sess;
list_for_each_entry(sess, &ctxdata->sess_list, list_node)
if (sess->session_id == session_id)
return sess;
return NULL;
}
void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
{
INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
mutex_init(&optee->shm_arg_cache.mutex);
optee->shm_arg_cache.flags = flags;
}
void optee_shm_arg_cache_uninit(struct optee *optee)
{
struct list_head *head = &optee->shm_arg_cache.shm_args;
struct optee_shm_arg_entry *entry;
mutex_destroy(&optee->shm_arg_cache.mutex);
while (!list_empty(head)) {
entry = list_first_entry(head, struct optee_shm_arg_entry,
list_node);
list_del(&entry->list_node);
if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
MAX_ARG_COUNT_PER_ENTRY) {
pr_err("Freeing non-free entry\n");
}
tee_shm_free(entry->shm);
kfree(entry);
}
}
size_t optee_msg_arg_size(size_t rpc_param_count)
{
size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
if (rpc_param_count)
sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
return sz;
}
/**
* optee_get_msg_arg() - Provide shared memory for argument struct
* @ctx: Caller TEE context
* @num_params: Number of parameter to store
* @entry_ret: Entry pointer, needed when freeing the buffer
* @shm_ret: Shared memory buffer
* @offs_ret: Offset of argument strut in shared memory buffer
*
* @returns a pointer to the argument struct in memory, else an ERR_PTR
*/
struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
size_t num_params,
struct optee_shm_arg_entry **entry_ret,
struct tee_shm **shm_ret,
u_int *offs_ret)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
size_t sz = optee_msg_arg_size(optee->rpc_param_count);
struct optee_shm_arg_entry *entry;
struct optee_msg_arg *ma;
size_t args_per_entry;
u_long bit;
u_int offs;
void *res;
if (num_params > MAX_ARG_PARAM_COUNT)
return ERR_PTR(-EINVAL);
if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
args_per_entry = SHM_ENTRY_SIZE / sz;
else
args_per_entry = 1;
mutex_lock(&optee->shm_arg_cache.mutex);
list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
if (bit < args_per_entry)
goto have_entry;
}
/*
* No entry was found, let's allocate a new.
*/
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
res = ERR_PTR(-ENOMEM);
goto out;
}
if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
else
res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
if (IS_ERR(res)) {
kfree(entry);
goto out;
}
entry->shm = res;
list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
bit = 0;
have_entry:
offs = bit * sz;
res = tee_shm_get_va(entry->shm, offs);
if (IS_ERR(res))
goto out;
ma = res;
set_bit(bit, entry->map);
memset(ma, 0, sz);
ma->num_params = num_params;
*entry_ret = entry;
*shm_ret = entry->shm;
*offs_ret = offs;
out:
mutex_unlock(&optee->shm_arg_cache.mutex);
return res;
}
/**
* optee_free_msg_arg() - Free previsouly obtained shared memory
* @ctx: Caller TEE context
* @entry: Pointer returned when the shared memory was obtained
* @offs: Offset of shared memory buffer to free
*
* This function frees the shared memory obtained with optee_get_msg_arg().
*/
void optee_free_msg_arg(struct tee_context *ctx,
struct optee_shm_arg_entry *entry, u_int offs)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
size_t sz = optee_msg_arg_size(optee->rpc_param_count);
u_long bit;
if (offs > SHM_ENTRY_SIZE || offs % sz) {
pr_err("Invalid offs %u\n", offs);
return;
}
bit = offs / sz;
mutex_lock(&optee->shm_arg_cache.mutex);
if (!test_bit(bit, entry->map))
pr_err("Bit pos %lu is already free\n", bit);
clear_bit(bit, entry->map);
mutex_unlock(&optee->shm_arg_cache.mutex);
}
int optee_open_session(struct tee_context *ctx,
struct tee_ioctl_open_session_arg *arg,
struct tee_param *param)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_context_data *ctxdata = ctx->data;
struct optee_shm_arg_entry *entry;
struct tee_shm *shm;
struct optee_msg_arg *msg_arg;
struct optee_session *sess = NULL;
uuid_t client_uuid;
u_int offs;
int rc;
/* +2 for the meta parameters added below */
msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
&entry, &shm, &offs);
if (IS_ERR(msg_arg))
return PTR_ERR(msg_arg);
msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
msg_arg->cancel_id = arg->cancel_id;
/*
* Initialize and add the meta parameters needed when opening a
* session.
*/
msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
OPTEE_MSG_ATTR_META;
msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
OPTEE_MSG_ATTR_META;
memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
msg_arg->params[1].u.value.c = arg->clnt_login;
rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
arg->clnt_uuid);
if (rc)
goto out;
export_uuid(msg_arg->params[1].u.octets, &client_uuid);
rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
arg->num_params, param);
if (rc)
goto out;
sess = kzalloc(sizeof(*sess), GFP_KERNEL);
if (!sess) {
rc = -ENOMEM;
goto out;
}
if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
msg_arg->ret = TEEC_ERROR_COMMUNICATION;
msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
}
if (msg_arg->ret == TEEC_SUCCESS) {
/* A new session has been created, add it to the list. */
sess->session_id = msg_arg->session;
mutex_lock(&ctxdata->mutex);
list_add(&sess->list_node, &ctxdata->sess_list);
mutex_unlock(&ctxdata->mutex);
} else {
kfree(sess);
}
if (optee->ops->from_msg_param(optee, param, arg->num_params,
msg_arg->params + 2)) {
arg->ret = TEEC_ERROR_COMMUNICATION;
arg->ret_origin = TEEC_ORIGIN_COMMS;
/* Close session again to avoid leakage */
optee_close_session(ctx, msg_arg->session);
} else {
arg->session = msg_arg->session;
arg->ret = msg_arg->ret;
arg->ret_origin = msg_arg->ret_origin;
}
out:
optee_free_msg_arg(ctx, entry, offs);
return rc;
}
int optee_close_session_helper(struct tee_context *ctx, u32 session)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_shm_arg_entry *entry;
struct optee_msg_arg *msg_arg;
struct tee_shm *shm;
u_int offs;
msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
if (IS_ERR(msg_arg))
return PTR_ERR(msg_arg);
msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
msg_arg->session = session;
optee->ops->do_call_with_arg(ctx, shm, offs);
optee_free_msg_arg(ctx, entry, offs);
return 0;
}
int optee_close_session(struct tee_context *ctx, u32 session)
{
struct optee_context_data *ctxdata = ctx->data;
struct optee_session *sess;
/* Check that the session is valid and remove it from the list */
mutex_lock(&ctxdata->mutex);
sess = find_session(ctxdata, session);
if (sess)
list_del(&sess->list_node);
mutex_unlock(&ctxdata->mutex);
if (!sess)
return -EINVAL;
kfree(sess);
return optee_close_session_helper(ctx, session);
}
int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
struct tee_param *param)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_context_data *ctxdata = ctx->data;
struct optee_shm_arg_entry *entry;
struct optee_msg_arg *msg_arg;
struct optee_session *sess;
struct tee_shm *shm;
u_int offs;
int rc;
/* Check that the session is valid */
mutex_lock(&ctxdata->mutex);
sess = find_session(ctxdata, arg->session);
mutex_unlock(&ctxdata->mutex);
if (!sess)
return -EINVAL;
msg_arg = optee_get_msg_arg(ctx, arg->num_params,
&entry, &shm, &offs);
if (IS_ERR(msg_arg))
return PTR_ERR(msg_arg);
msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
msg_arg->func = arg->func;
msg_arg->session = arg->session;
msg_arg->cancel_id = arg->cancel_id;
rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
param);
if (rc)
goto out;
if (optee->ops->do_call_with_arg(ctx, shm, offs)) {
msg_arg->ret = TEEC_ERROR_COMMUNICATION;
msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
}
if (optee->ops->from_msg_param(optee, param, arg->num_params,
msg_arg->params)) {
msg_arg->ret = TEEC_ERROR_COMMUNICATION;
msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
}
arg->ret = msg_arg->ret;
arg->ret_origin = msg_arg->ret_origin;
out:
optee_free_msg_arg(ctx, entry, offs);
return rc;
}
int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
{
struct optee *optee = tee_get_drvdata(ctx->teedev);
struct optee_context_data *ctxdata = ctx->data;
struct optee_shm_arg_entry *entry;
struct optee_msg_arg *msg_arg;
struct optee_session *sess;
struct tee_shm *shm;
u_int offs;
/* Check that the session is valid */
mutex_lock(&ctxdata->mutex);
sess = find_session(ctxdata, session);
mutex_unlock(&ctxdata->mutex);
if (!sess)
return -EINVAL;
msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
if (IS_ERR(msg_arg))
return PTR_ERR(msg_arg);
msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
msg_arg->session = session;
msg_arg->cancel_id = cancel_id;
optee->ops->do_call_with_arg(ctx, shm, offs);
optee_free_msg_arg(ctx, entry, offs);
return 0;
}
static bool is_normal_memory(pgprot_t p)
{
#if defined(CONFIG_ARM)
u32 attr = pgprot_val(p) & L_PTE_MT_MASK;
return (attr == L_PTE_MT_WRITEALLOC) || (attr == L_PTE_MT_WRITEBACK) ||
(attr == L_PTE_MT_WRITETHROUGH);
#elif defined(CONFIG_ARM64)
return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
#else
#error "Unsupported architecture"
#endif
}
static int __check_mem_type(struct mm_struct *mm, unsigned long start,
unsigned long end)
{
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, start);
for_each_vma_range(vmi, vma, end) {
if (!is_normal_memory(vma->vm_page_prot))
return -EINVAL;
}
return 0;
}
int optee_check_mem_type(unsigned long start, size_t num_pages)
{
struct mm_struct *mm = current->mm;
int rc;
/*
* Allow kernel address to register with OP-TEE as kernel
* pages are configured as normal memory only.
*/
if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
return 0;
mmap_read_lock(mm);
rc = __check_mem_type(mm, start, start + num_pages * PAGE_SIZE);
mmap_read_unlock(mm);
return rc;
}