linux-imx/rust/helpers.c
Alice Ryhl 4aa358bcc5 FROMLIST: rust: file: add DeferredFdCloser
To close an fd from kernel space, we could call `ksys_close`. However,
if we do this to an fd that is held using `fdget`, then we may trigger a
use-after-free. Introduce a helper that can be used to close an fd even
if the fd is currently held with `fdget`. This is done by grabbing an
extra refcount to the file and dropping it in a task work once we return
to userspace.

This is necessary for Rust Binder because otherwise the user might try
to have Binder close its fd for /dev/binder, which would cause problems
as this happens inside an ioctl on /dev/binder, and ioctls hold the fd
using `fdget`.

Additional motivation can be found in commit 80cd795630 ("binder: fix
use-after-free due to ksys_close() during fdget()") and in the comments
on `binder_do_fd_close`.

If there is some way to detect whether an fd is currently held with
`fdget`, then this could be optimized to skip the allocation and task
work when this is not the case. Another possible optimization would be
to combine several fds into a single task work, since this is used with
fd arrays that might hold several fds.

That said, it might not be necessary to optimize it, because Rust Binder
has two ways to send fds: BINDER_TYPE_FD and BINDER_TYPE_FDA. With
BINDER_TYPE_FD, it is userspace's responsibility to close the fd, so
this mechanism is used only by BINDER_TYPE_FDA, but fd arrays are used
rarely these days.

Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Change-Id: I645730b046505d99ccba081436b75c6f6b5b07f7
Signed-off-by: Alice Ryhl <aliceryhl@google.com>

Bug: 324206405
Link: https://lore.kernel.org/all/20240209-alice-file-v5-8-a37886783025@google.com/
Change-Id: I1295a519b991d548b0330994b31d28454e3cb717
[ Use close_fd_get_file instead of file_close_fd. ]
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
2024-02-13 19:46:05 +00:00

275 lines
7.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Non-trivial C macros cannot be used in Rust. Similarly, inlined C functions
* cannot be called either. This file explicitly creates functions ("helpers")
* that wrap those so that they can be called from Rust.
*
* Even though Rust kernel modules should never use directly the bindings, some
* of these helpers need to be exported because Rust generics and inlined
* functions may not get their code generated in the crate where they are
* defined. Other helpers, called from non-inline functions, may not be
* exported, in principle. However, in general, the Rust compiler does not
* guarantee codegen will be performed for a non-inline function either.
* Therefore, this file exports all the helpers. In the future, this may be
* revisited to reduce the number of exports after the compiler is informed
* about the places codegen is required.
*
* All symbols are exported as GPL-only to guarantee no GPL-only feature is
* accidentally exposed.
*
* Sorted alphabetically.
*/
#include <kunit/test-bug.h>
#include <linux/bug.h>
#include <linux/build_bug.h>
#include <linux/cred.h>
#include <linux/err.h>
#include <linux/errname.h>
#include <linux/fs.h>
#include <linux/mutex.h>
#include <linux/refcount.h>
#include <linux/sched/signal.h>
#include <linux/security.h>
#include <linux/spinlock.h>
#include <linux/task_work.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
__noreturn void rust_helper_BUG(void)
{
BUG();
}
EXPORT_SYMBOL_GPL(rust_helper_BUG);
void rust_helper_mutex_lock(struct mutex *lock)
{
mutex_lock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_mutex_lock);
void rust_helper___spin_lock_init(spinlock_t *lock, const char *name,
struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_SPINLOCK
__raw_spin_lock_init(spinlock_check(lock), name, key, LD_WAIT_CONFIG);
#else
spin_lock_init(lock);
#endif
}
EXPORT_SYMBOL_GPL(rust_helper___spin_lock_init);
void rust_helper_spin_lock(spinlock_t *lock)
{
spin_lock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_spin_lock);
void rust_helper_spin_unlock(spinlock_t *lock)
{
spin_unlock(lock);
}
EXPORT_SYMBOL_GPL(rust_helper_spin_unlock);
void rust_helper_init_wait(struct wait_queue_entry *wq_entry)
{
init_wait(wq_entry);
}
EXPORT_SYMBOL_GPL(rust_helper_init_wait);
int rust_helper_signal_pending(struct task_struct *t)
{
return signal_pending(t);
}
EXPORT_SYMBOL_GPL(rust_helper_signal_pending);
refcount_t rust_helper_REFCOUNT_INIT(int n)
{
return (refcount_t)REFCOUNT_INIT(n);
}
EXPORT_SYMBOL_GPL(rust_helper_REFCOUNT_INIT);
void rust_helper_refcount_inc(refcount_t *r)
{
refcount_inc(r);
}
EXPORT_SYMBOL_GPL(rust_helper_refcount_inc);
bool rust_helper_refcount_dec_and_test(refcount_t *r)
{
return refcount_dec_and_test(r);
}
EXPORT_SYMBOL_GPL(rust_helper_refcount_dec_and_test);
__force void *rust_helper_ERR_PTR(long err)
{
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(rust_helper_ERR_PTR);
bool rust_helper_IS_ERR(__force const void *ptr)
{
return IS_ERR(ptr);
}
EXPORT_SYMBOL_GPL(rust_helper_IS_ERR);
long rust_helper_PTR_ERR(__force const void *ptr)
{
return PTR_ERR(ptr);
}
EXPORT_SYMBOL_GPL(rust_helper_PTR_ERR);
const char *rust_helper_errname(int err)
{
return errname(err);
}
EXPORT_SYMBOL_GPL(rust_helper_errname);
struct task_struct *rust_helper_get_current(void)
{
return current;
}
EXPORT_SYMBOL_GPL(rust_helper_get_current);
void rust_helper_get_task_struct(struct task_struct *t)
{
get_task_struct(t);
}
EXPORT_SYMBOL_GPL(rust_helper_get_task_struct);
void rust_helper_put_task_struct(struct task_struct *t)
{
put_task_struct(t);
}
EXPORT_SYMBOL_GPL(rust_helper_put_task_struct);
kuid_t rust_helper_task_uid(struct task_struct *task)
{
return task_uid(task);
}
EXPORT_SYMBOL_GPL(rust_helper_task_uid);
kuid_t rust_helper_task_euid(struct task_struct *task)
{
return task_euid(task);
}
EXPORT_SYMBOL_GPL(rust_helper_task_euid);
#ifndef CONFIG_USER_NS
uid_t rust_helper_from_kuid(struct user_namespace *to, kuid_t uid)
{
return from_kuid(to, uid);
}
EXPORT_SYMBOL_GPL(rust_helper_from_kuid);
#endif /* CONFIG_USER_NS */
bool rust_helper_uid_eq(kuid_t left, kuid_t right)
{
return uid_eq(left, right);
}
EXPORT_SYMBOL_GPL(rust_helper_uid_eq);
kuid_t rust_helper_current_euid(void)
{
return current_euid();
}
EXPORT_SYMBOL_GPL(rust_helper_current_euid);
struct user_namespace *rust_helper_current_user_ns(void)
{
return current_user_ns();
}
EXPORT_SYMBOL_GPL(rust_helper_current_user_ns);
pid_t rust_helper_task_tgid_nr_ns(struct task_struct *tsk,
struct pid_namespace *ns)
{
return task_tgid_nr_ns(tsk, ns);
}
EXPORT_SYMBOL_GPL(rust_helper_task_tgid_nr_ns);
struct kunit *rust_helper_kunit_get_current_test(void)
{
return kunit_get_current_test();
}
EXPORT_SYMBOL_GPL(rust_helper_kunit_get_current_test);
void rust_helper_init_work_with_key(struct work_struct *work, work_func_t func,
bool onstack, const char *name,
struct lock_class_key *key)
{
__init_work(work, onstack);
work->data = (atomic_long_t)WORK_DATA_INIT();
lockdep_init_map(&work->lockdep_map, name, key, 0);
INIT_LIST_HEAD(&work->entry);
work->func = func;
}
EXPORT_SYMBOL_GPL(rust_helper_init_work_with_key);
struct file *rust_helper_get_file(struct file *f)
{
return get_file(f);
}
EXPORT_SYMBOL_GPL(rust_helper_get_file);
const struct cred *rust_helper_get_cred(const struct cred *cred)
{
return get_cred(cred);
}
EXPORT_SYMBOL_GPL(rust_helper_get_cred);
void rust_helper_put_cred(const struct cred *cred)
{
put_cred(cred);
}
EXPORT_SYMBOL_GPL(rust_helper_put_cred);
#ifndef CONFIG_SECURITY
void rust_helper_security_cred_getsecid(const struct cred *c, u32 *secid)
{
security_cred_getsecid(c, secid);
}
EXPORT_SYMBOL_GPL(rust_helper_security_cred_getsecid);
int rust_helper_security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_secid_to_secctx(secid, secdata, seclen);
}
EXPORT_SYMBOL_GPL(rust_helper_security_secid_to_secctx);
void rust_helper_security_release_secctx(char *secdata, u32 seclen)
{
security_release_secctx(secdata, seclen);
}
EXPORT_SYMBOL_GPL(rust_helper_security_release_secctx);
#endif
void rust_helper_init_task_work(struct callback_head *twork,
task_work_func_t func)
{
init_task_work(twork, func);
}
EXPORT_SYMBOL_GPL(rust_helper_init_task_work);
/*
* `bindgen` binds the C `size_t` type as the Rust `usize` type, so we can
* use it in contexts where Rust expects a `usize` like slice (array) indices.
* `usize` is defined to be the same as C's `uintptr_t` type (can hold any
* pointer) but not necessarily the same as `size_t` (can hold the size of any
* single object). Most modern platforms use the same concrete integer type for
* both of them, but in case we find ourselves on a platform where
* that's not true, fail early instead of risking ABI or
* integer-overflow issues.
*
* If your platform fails this assertion, it means that you are in
* danger of integer-overflow bugs (even if you attempt to add
* `--no-size_t-is-usize`). It may be easiest to change the kernel ABI on
* your platform such that `size_t` matches `uintptr_t` (i.e., to increase
* `size_t`, because `uintptr_t` has to be at least as big as `size_t`).
*/
static_assert(
sizeof(size_t) == sizeof(uintptr_t) &&
__alignof__(size_t) == __alignof__(uintptr_t),
"Rust code expects C `size_t` to match Rust `usize`"
);