drm/msm/a6xx: Implement preemption for a7xx targets

This patch implements preemption feature for A6xx targets, this allows
the GPU to switch to a higher priority ringbuffer if one is ready. A6XX
hardware as such supports multiple levels of preemption granularities,
ranging from coarse grained(ringbuffer level) to a more fine grained
such as draw-call level or a bin boundary level preemption. This patch
enables the basic preemption level, with more fine grained preemption
support to follow.

Reviewed-by: Akhil P Oommen <quic_akhilpo@quicinc.com>
Tested-by: Rob Clark <robdclark@gmail.com>
Tested-by: Neil Armstrong <neil.armstrong@linaro.org> # on SM8650-QRD
Tested-by: Neil Armstrong <neil.armstrong@linaro.org> # on SM8550-QRD
Tested-by: Neil Armstrong <neil.armstrong@linaro.org> # on SM8450-HDK
Signed-off-by: Sharat Masetty <smasetty@codeaurora.org>
Signed-off-by: Antonino Maniscalco <antomani103@gmail.com>
Patchwork: https://patchwork.freedesktop.org/patch/618021/
Signed-off-by: Rob Clark <robdclark@chromium.org>
This commit is contained in:
Antonino Maniscalco 2024-10-03 18:12:55 +02:00 committed by Rob Clark
parent 91389b4e32
commit e7ae83da4a
5 changed files with 745 additions and 11 deletions

View File

@ -23,6 +23,7 @@ adreno-y := \
adreno/a6xx_gpu.o \
adreno/a6xx_gmu.o \
adreno/a6xx_hfi.o \
adreno/a6xx_preempt.o \
adreno-$(CONFIG_DEBUG_FS) += adreno/a5xx_debugfs.o \

View File

@ -68,6 +68,8 @@ static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
uint32_t wptr;
unsigned long flags;
@ -81,12 +83,17 @@ static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
/* Update HW if this is the current ring and we are not in preempt*/
if (!a6xx_in_preempt(a6xx_gpu)) {
if (a6xx_gpu->cur_ring == ring)
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
else
ring->restore_wptr = true;
} else {
ring->restore_wptr = true;
}
spin_unlock_irqrestore(&ring->preempt_lock, flags);
/* Make sure everything is posted before making a decision */
mb();
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
}
static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
@ -138,12 +145,14 @@ static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
/*
* Write the new TTBR0 to the memstore. This is good for debugging.
* Needed for preemption
*/
OUT_PKT7(ring, CP_MEM_WRITE, 4);
OUT_PKT7(ring, CP_MEM_WRITE, 5);
OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
OUT_RING(ring, lower_32_bits(ttbr));
OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
OUT_RING(ring, upper_32_bits(ttbr));
OUT_RING(ring, ctx->seqno);
/*
* Sync both threads after switching pagetables and enable BR only
@ -268,6 +277,34 @@ static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
a6xx_flush(gpu, ring);
}
static void a6xx_emit_set_pseudo_reg(struct msm_ringbuffer *ring,
struct a6xx_gpu *a6xx_gpu, struct msm_gpu_submitqueue *queue)
{
OUT_PKT7(ring, CP_SET_PSEUDO_REG, 12);
OUT_RING(ring, SMMU_INFO);
/* don't save SMMU, we write the record from the kernel instead */
OUT_RING(ring, 0);
OUT_RING(ring, 0);
/* privileged and non secure buffer save */
OUT_RING(ring, NON_SECURE_SAVE_ADDR);
OUT_RING(ring, lower_32_bits(
a6xx_gpu->preempt_iova[ring->id]));
OUT_RING(ring, upper_32_bits(
a6xx_gpu->preempt_iova[ring->id]));
/* user context buffer save, seems to be unnused by fw */
OUT_RING(ring, NON_PRIV_SAVE_ADDR);
OUT_RING(ring, 0);
OUT_RING(ring, 0);
OUT_RING(ring, COUNTER);
/* seems OK to set to 0 to disable it */
OUT_RING(ring, 0);
OUT_RING(ring, 0);
}
static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
@ -285,6 +322,13 @@ static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
/*
* If preemption is enabled, then set the pseudo register for the save
* sequence
*/
if (gpu->nr_rings > 1)
a6xx_emit_set_pseudo_reg(ring, a6xx_gpu, submit->queue);
get_stats_counter(ring, REG_A7XX_RBBM_PERFCTR_CP(0),
rbmemptr_stats(ring, index, cpcycles_start));
get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
@ -376,6 +420,8 @@ static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence)));
OUT_RING(ring, submit->seqno);
a6xx_gpu->last_seqno[ring->id] = submit->seqno;
/* write the ringbuffer timestamp */
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CACHE_CLEAN | CP_EVENT_WRITE_0_IRQ | BIT(27));
@ -389,10 +435,32 @@ static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
OUT_PKT7(ring, CP_SET_MARKER, 1);
OUT_RING(ring, 0x100); /* IFPC enable */
/* If preemption is enabled */
if (gpu->nr_rings > 1) {
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
/*
* If dword[2:1] are non zero, they specify an address for
* the CP to write the value of dword[3] to on preemption
* complete. Write 0 to skip the write
*/
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
/* Data value - not used if the address above is 0 */
OUT_RING(ring, 0x01);
/* generate interrupt on preemption completion */
OUT_RING(ring, 0x00);
}
trace_msm_gpu_submit_flush(submit,
gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
a6xx_flush(gpu, ring);
/* Check to see if we need to start preemption */
a6xx_preempt_trigger(gpu);
}
static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
@ -599,6 +667,77 @@ static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
adreno_gpu->ubwc_config.macrotile_mode);
}
static void a7xx_patch_pwrup_reglist(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
const struct adreno_reglist_list *reglist;
void *ptr = a6xx_gpu->pwrup_reglist_ptr;
struct cpu_gpu_lock *lock = ptr;
u32 *dest = (u32 *)&lock->regs[0];
int i;
reglist = adreno_gpu->info->a6xx->pwrup_reglist;
lock->gpu_req = lock->cpu_req = lock->turn = 0;
lock->ifpc_list_len = 0;
lock->preemption_list_len = reglist->count;
/*
* For each entry in each of the lists, write the offset and the current
* register value into the GPU buffer
*/
for (i = 0; i < reglist->count; i++) {
*dest++ = reglist->regs[i];
*dest++ = gpu_read(gpu, reglist->regs[i]);
}
/*
* The overall register list is composed of
* 1. Static IFPC-only registers
* 2. Static IFPC + preemption registers
* 3. Dynamic IFPC + preemption registers (ex: perfcounter selects)
*
* The first two lists are static. Size of these lists are stored as
* number of pairs in ifpc_list_len and preemption_list_len
* respectively. With concurrent binning, Some of the perfcounter
* registers being virtualized, CP needs to know the pipe id to program
* the aperture inorder to restore the same. Thus, third list is a
* dynamic list with triplets as
* (<aperture, shifted 12 bits> <address> <data>), and the length is
* stored as number for triplets in dynamic_list_len.
*/
lock->dynamic_list_len = 0;
}
static int a7xx_preempt_start(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
if (gpu->nr_rings <= 1)
return 0;
/* Turn CP protection off */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
a6xx_emit_set_pseudo_reg(ring, a6xx_gpu, NULL);
/* Yield the floor on command completion */
OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
OUT_RING(ring, 0x00);
/* Generate interrupt on preemption completion */
OUT_RING(ring, 0x00);
a6xx_flush(gpu, ring);
return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static int a6xx_cp_init(struct msm_gpu *gpu)
{
struct msm_ringbuffer *ring = gpu->rb[0];
@ -630,6 +769,8 @@ static int a6xx_cp_init(struct msm_gpu *gpu)
static int a7xx_cp_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
u32 mask;
@ -667,11 +808,11 @@ static int a7xx_cp_init(struct msm_gpu *gpu)
/* *Don't* send a power up reg list for concurrent binning (TODO) */
/* Lo address */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, lower_32_bits(a6xx_gpu->pwrup_reglist_iova));
/* Hi address */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, upper_32_bits(a6xx_gpu->pwrup_reglist_iova));
/* BIT(31) set => read the regs from the list */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, BIT(31));
a6xx_flush(gpu, ring);
return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
@ -795,6 +936,16 @@ static int a6xx_ucode_load(struct msm_gpu *gpu)
msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
}
a6xx_gpu->pwrup_reglist_ptr = msm_gem_kernel_new(gpu->dev, PAGE_SIZE,
MSM_BO_WC | MSM_BO_MAP_PRIV,
gpu->aspace, &a6xx_gpu->pwrup_reglist_bo,
&a6xx_gpu->pwrup_reglist_iova);
if (IS_ERR(a6xx_gpu->pwrup_reglist_ptr))
return PTR_ERR(a6xx_gpu->pwrup_reglist_ptr);
msm_gem_object_set_name(a6xx_gpu->pwrup_reglist_bo, "pwrup_reglist");
return 0;
}
@ -1125,6 +1276,8 @@ static int hw_init(struct msm_gpu *gpu)
if (a6xx_gpu->shadow_bo) {
gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR,
shadowptr(a6xx_gpu, gpu->rb[0]));
for (unsigned int i = 0; i < gpu->nr_rings; i++)
a6xx_gpu->shadow[i] = 0;
}
/* ..which means "always" on A7xx, also for BV shadow */
@ -1133,6 +1286,8 @@ static int hw_init(struct msm_gpu *gpu)
rbmemptr(gpu->rb[0], bv_rptr));
}
a6xx_preempt_hw_init(gpu);
/* Always come up on rb 0 */
a6xx_gpu->cur_ring = gpu->rb[0];
@ -1142,6 +1297,11 @@ static int hw_init(struct msm_gpu *gpu)
/* Enable the SQE_to start the CP engine */
gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
if (adreno_is_a7xx(adreno_gpu) && !a6xx_gpu->pwrup_reglist_emitted) {
a7xx_patch_pwrup_reglist(gpu);
a6xx_gpu->pwrup_reglist_emitted = true;
}
ret = adreno_is_a7xx(adreno_gpu) ? a7xx_cp_init(gpu) : a6xx_cp_init(gpu);
if (ret)
goto out;
@ -1179,6 +1339,10 @@ static int hw_init(struct msm_gpu *gpu)
out:
if (adreno_has_gmu_wrapper(adreno_gpu))
return ret;
/* Last step - yield the ringbuffer */
a7xx_preempt_start(gpu);
/*
* Tell the GMU that we are done touching the GPU and it can start power
* management
@ -1556,8 +1720,13 @@ static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
if (status & A6XX_RBBM_INT_0_MASK_SWFUSEVIOLATION)
a7xx_sw_fuse_violation_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
msm_gpu_retire(gpu);
a6xx_preempt_trigger(gpu);
}
if (status & A6XX_RBBM_INT_0_MASK_CP_SW)
a6xx_preempt_irq(gpu);
return IRQ_HANDLED;
}
@ -2330,6 +2499,8 @@ struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
a6xx_fault_handler);
a6xx_calc_ubwc_config(adreno_gpu);
/* Set up the preemption specific bits and pieces for each ringbuffer */
a6xx_preempt_init(gpu);
return gpu;
}

View File

@ -12,6 +12,24 @@
extern bool hang_debug;
struct cpu_gpu_lock {
uint32_t gpu_req;
uint32_t cpu_req;
uint32_t turn;
union {
struct {
uint16_t list_length;
uint16_t list_offset;
};
struct {
uint8_t ifpc_list_len;
uint8_t preemption_list_len;
uint16_t dynamic_list_len;
};
};
uint64_t regs[62];
};
/**
* struct a6xx_info - a6xx specific information from device table
*
@ -35,6 +53,23 @@ struct a6xx_gpu {
uint64_t sqe_iova;
struct msm_ringbuffer *cur_ring;
struct msm_ringbuffer *next_ring;
struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS];
void *preempt[MSM_GPU_MAX_RINGS];
uint64_t preempt_iova[MSM_GPU_MAX_RINGS];
struct drm_gem_object *preempt_smmu_bo[MSM_GPU_MAX_RINGS];
void *preempt_smmu[MSM_GPU_MAX_RINGS];
uint64_t preempt_smmu_iova[MSM_GPU_MAX_RINGS];
uint32_t last_seqno[MSM_GPU_MAX_RINGS];
atomic_t preempt_state;
spinlock_t eval_lock;
struct timer_list preempt_timer;
unsigned int preempt_level;
bool uses_gmem;
bool skip_save_restore;
struct a6xx_gmu gmu;
@ -42,6 +77,11 @@ struct a6xx_gpu {
uint64_t shadow_iova;
uint32_t *shadow;
struct drm_gem_object *pwrup_reglist_bo;
void *pwrup_reglist_ptr;
uint64_t pwrup_reglist_iova;
bool pwrup_reglist_emitted;
bool has_whereami;
void __iomem *llc_mmio;
@ -53,6 +93,100 @@ struct a6xx_gpu {
#define to_a6xx_gpu(x) container_of(x, struct a6xx_gpu, base)
/*
* In order to do lockless preemption we use a simple state machine to progress
* through the process.
*
* PREEMPT_NONE - no preemption in progress. Next state START.
* PREEMPT_START - The trigger is evaluating if preemption is possible. Next
* states: TRIGGERED, NONE
* PREEMPT_FINISH - An intermediate state before moving back to NONE. Next
* state: NONE.
* PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next
* states: FAULTED, PENDING
* PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger
* recovery. Next state: N/A
* PREEMPT_PENDING: Preemption complete interrupt fired - the callback is
* checking the success of the operation. Next state: FAULTED, NONE.
*/
enum a6xx_preempt_state {
PREEMPT_NONE = 0,
PREEMPT_START,
PREEMPT_FINISH,
PREEMPT_TRIGGERED,
PREEMPT_FAULTED,
PREEMPT_PENDING,
};
/*
* struct a6xx_preempt_record is a shared buffer between the microcode and the
* CPU to store the state for preemption. The record itself is much larger
* (2112k) but most of that is used by the CP for storage.
*
* There is a preemption record assigned per ringbuffer. When the CPU triggers a
* preemption, it fills out the record with the useful information (wptr, ring
* base, etc) and the microcode uses that information to set up the CP following
* the preemption. When a ring is switched out, the CP will save the ringbuffer
* state back to the record. In this way, once the records are properly set up
* the CPU can quickly switch back and forth between ringbuffers by only
* updating a few registers (often only the wptr).
*
* These are the CPU aware registers in the record:
* @magic: Must always be 0xAE399D6EUL
* @info: Type of the record - written 0 by the CPU, updated by the CP
* @errno: preemption error record
* @data: Data field in YIELD and SET_MARKER packets, Written and used by CP
* @cntl: Value of RB_CNTL written by CPU, save/restored by CP
* @rptr: Value of RB_RPTR written by CPU, save/restored by CP
* @wptr: Value of RB_WPTR written by CPU, save/restored by CP
* @_pad: Reserved/padding
* @rptr_addr: Value of RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP
* @rbase: Value of RB_BASE written by CPU, save/restored by CP
* @counter: GPU address of the storage area for the preemption counters
* @bv_rptr_addr: Value of BV_RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP
*/
struct a6xx_preempt_record {
u32 magic;
u32 info;
u32 errno;
u32 data;
u32 cntl;
u32 rptr;
u32 wptr;
u32 _pad;
u64 rptr_addr;
u64 rbase;
u64 counter;
u64 bv_rptr_addr;
};
#define A6XX_PREEMPT_RECORD_MAGIC 0xAE399D6EUL
#define PREEMPT_SMMU_INFO_SIZE 4096
#define PREEMPT_RECORD_SIZE(adreno_gpu) \
((adreno_gpu->info->preempt_record_size) == 0 ? \
4192 * SZ_1K : (adreno_gpu->info->preempt_record_size))
/*
* The preemption counter block is a storage area for the value of the
* preemption counters that are saved immediately before context switch. We
* append it on to the end of the allocation for the preemption record.
*/
#define A6XX_PREEMPT_COUNTER_SIZE (16 * 4)
struct a7xx_cp_smmu_info {
u32 magic;
u32 _pad4;
u64 ttbr0;
u32 asid;
u32 context_idr;
u32 context_bank;
};
#define GEN7_CP_SMMU_INFO_MAGIC 0x241350d5UL
/*
* Given a register and a count, return a value to program into
* REG_CP_PROTECT_REG(n) - this will block both reads and writes for
@ -110,6 +244,34 @@ int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node);
int a6xx_gmu_wrapper_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node);
void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu);
void a6xx_preempt_init(struct msm_gpu *gpu);
void a6xx_preempt_hw_init(struct msm_gpu *gpu);
void a6xx_preempt_trigger(struct msm_gpu *gpu);
void a6xx_preempt_irq(struct msm_gpu *gpu);
void a6xx_preempt_fini(struct msm_gpu *gpu);
int a6xx_preempt_submitqueue_setup(struct msm_gpu *gpu,
struct msm_gpu_submitqueue *queue);
void a6xx_preempt_submitqueue_close(struct msm_gpu *gpu,
struct msm_gpu_submitqueue *queue);
/* Return true if we are in a preempt state */
static inline bool a6xx_in_preempt(struct a6xx_gpu *a6xx_gpu)
{
/*
* Make sure the read to preempt_state is ordered with respect to reads
* of other variables before ...
*/
smp_rmb();
int preempt_state = atomic_read(&a6xx_gpu->preempt_state);
/* ... and after. */
smp_rmb();
return !(preempt_state == PREEMPT_NONE ||
preempt_state == PREEMPT_FINISH);
}
void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
bool suspended);
unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu);

View File

@ -0,0 +1,393 @@
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, The Linux Foundation. All rights reserved. */
/* Copyright (c) 2023 Collabora, Ltd. */
/* Copyright (c) 2024 Valve Corporation */
#include "msm_gem.h"
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
#include "msm_mmu.h"
/*
* Try to transition the preemption state from old to new. Return
* true on success or false if the original state wasn't 'old'
*/
static inline bool try_preempt_state(struct a6xx_gpu *a6xx_gpu,
enum a6xx_preempt_state old, enum a6xx_preempt_state new)
{
enum a6xx_preempt_state cur = atomic_cmpxchg(&a6xx_gpu->preempt_state,
old, new);
return (cur == old);
}
/*
* Force the preemption state to the specified state. This is used in cases
* where the current state is known and won't change
*/
static inline void set_preempt_state(struct a6xx_gpu *gpu,
enum a6xx_preempt_state new)
{
/*
* preempt_state may be read by other cores trying to trigger a
* preemption or in the interrupt handler so barriers are needed
* before...
*/
smp_mb__before_atomic();
atomic_set(&gpu->preempt_state, new);
/* ... and after*/
smp_mb__after_atomic();
}
/* Write the most recent wptr for the given ring into the hardware */
static inline void update_wptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
unsigned long flags;
uint32_t wptr;
spin_lock_irqsave(&ring->preempt_lock, flags);
if (ring->restore_wptr) {
wptr = get_wptr(ring);
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
ring->restore_wptr = false;
}
spin_unlock_irqrestore(&ring->preempt_lock, flags);
}
/* Return the highest priority ringbuffer with something in it */
static struct msm_ringbuffer *get_next_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
unsigned long flags;
int i;
for (i = 0; i < gpu->nr_rings; i++) {
bool empty;
struct msm_ringbuffer *ring = gpu->rb[i];
spin_lock_irqsave(&ring->preempt_lock, flags);
empty = (get_wptr(ring) == gpu->funcs->get_rptr(gpu, ring));
if (!empty && ring == a6xx_gpu->cur_ring)
empty = ring->memptrs->fence == a6xx_gpu->last_seqno[i];
spin_unlock_irqrestore(&ring->preempt_lock, flags);
if (!empty)
return ring;
}
return NULL;
}
static void a6xx_preempt_timer(struct timer_list *t)
{
struct a6xx_gpu *a6xx_gpu = from_timer(a6xx_gpu, t, preempt_timer);
struct msm_gpu *gpu = &a6xx_gpu->base.base;
struct drm_device *dev = gpu->dev;
if (!try_preempt_state(a6xx_gpu, PREEMPT_TRIGGERED, PREEMPT_FAULTED))
return;
dev_err(dev->dev, "%s: preemption timed out\n", gpu->name);
kthread_queue_work(gpu->worker, &gpu->recover_work);
}
void a6xx_preempt_irq(struct msm_gpu *gpu)
{
uint32_t status;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct drm_device *dev = gpu->dev;
if (!try_preempt_state(a6xx_gpu, PREEMPT_TRIGGERED, PREEMPT_PENDING))
return;
/* Delete the preemption watchdog timer */
del_timer(&a6xx_gpu->preempt_timer);
/*
* The hardware should be setting the stop bit of CP_CONTEXT_SWITCH_CNTL
* to zero before firing the interrupt, but there is a non zero chance
* of a hardware condition or a software race that could set it again
* before we have a chance to finish. If that happens, log and go for
* recovery
*/
status = gpu_read(gpu, REG_A6XX_CP_CONTEXT_SWITCH_CNTL);
if (unlikely(status & A6XX_CP_CONTEXT_SWITCH_CNTL_STOP)) {
DRM_DEV_ERROR(&gpu->pdev->dev,
"!!!!!!!!!!!!!!!! preemption faulted !!!!!!!!!!!!!! irq\n");
set_preempt_state(a6xx_gpu, PREEMPT_FAULTED);
dev_err(dev->dev, "%s: Preemption failed to complete\n",
gpu->name);
kthread_queue_work(gpu->worker, &gpu->recover_work);
return;
}
a6xx_gpu->cur_ring = a6xx_gpu->next_ring;
a6xx_gpu->next_ring = NULL;
set_preempt_state(a6xx_gpu, PREEMPT_FINISH);
update_wptr(gpu, a6xx_gpu->cur_ring);
set_preempt_state(a6xx_gpu, PREEMPT_NONE);
/*
* Retrigger preemption to avoid a deadlock that might occur when preemption
* is skipped due to it being already in flight when requested.
*/
a6xx_preempt_trigger(gpu);
}
void a6xx_preempt_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i;
/* No preemption if we only have one ring */
if (gpu->nr_rings == 1)
return;
for (i = 0; i < gpu->nr_rings; i++) {
struct a6xx_preempt_record *record_ptr = a6xx_gpu->preempt[i];
record_ptr->wptr = 0;
record_ptr->rptr = 0;
record_ptr->rptr_addr = shadowptr(a6xx_gpu, gpu->rb[i]);
record_ptr->info = 0;
record_ptr->data = 0;
record_ptr->rbase = gpu->rb[i]->iova;
}
/* Write a 0 to signal that we aren't switching pagetables */
gpu_write64(gpu, REG_A6XX_CP_CONTEXT_SWITCH_SMMU_INFO, 0);
/* Enable the GMEM save/restore feature for preemption */
gpu_write(gpu, REG_A6XX_RB_CONTEXT_SWITCH_GMEM_SAVE_RESTORE, 0x1);
/* Reset the preemption state */
set_preempt_state(a6xx_gpu, PREEMPT_NONE);
spin_lock_init(&a6xx_gpu->eval_lock);
/* Always come up on rb 0 */
a6xx_gpu->cur_ring = gpu->rb[0];
}
void a6xx_preempt_trigger(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
unsigned long flags;
struct msm_ringbuffer *ring;
unsigned int cntl;
if (gpu->nr_rings == 1)
return;
/*
* Lock to make sure another thread attempting preemption doesn't skip it
* while we are still evaluating the next ring. This makes sure the other
* thread does start preemption if we abort it and avoids a soft lock.
*/
spin_lock_irqsave(&a6xx_gpu->eval_lock, flags);
/*
* Try to start preemption by moving from NONE to START. If
* unsuccessful, a preemption is already in flight
*/
if (!try_preempt_state(a6xx_gpu, PREEMPT_NONE, PREEMPT_START)) {
spin_unlock_irqrestore(&a6xx_gpu->eval_lock, flags);
return;
}
cntl = A6XX_CP_CONTEXT_SWITCH_CNTL_LEVEL(a6xx_gpu->preempt_level);
if (a6xx_gpu->skip_save_restore)
cntl |= A6XX_CP_CONTEXT_SWITCH_CNTL_SKIP_SAVE_RESTORE;
if (a6xx_gpu->uses_gmem)
cntl |= A6XX_CP_CONTEXT_SWITCH_CNTL_USES_GMEM;
cntl |= A6XX_CP_CONTEXT_SWITCH_CNTL_STOP;
/* Get the next ring to preempt to */
ring = get_next_ring(gpu);
/*
* If no ring is populated or the highest priority ring is the current
* one do nothing except to update the wptr to the latest and greatest
*/
if (!ring || (a6xx_gpu->cur_ring == ring)) {
set_preempt_state(a6xx_gpu, PREEMPT_FINISH);
update_wptr(gpu, a6xx_gpu->cur_ring);
set_preempt_state(a6xx_gpu, PREEMPT_NONE);
spin_unlock_irqrestore(&a6xx_gpu->eval_lock, flags);
return;
}
spin_unlock_irqrestore(&a6xx_gpu->eval_lock, flags);
spin_lock_irqsave(&ring->preempt_lock, flags);
struct a7xx_cp_smmu_info *smmu_info_ptr =
a6xx_gpu->preempt_smmu[ring->id];
struct a6xx_preempt_record *record_ptr = a6xx_gpu->preempt[ring->id];
u64 ttbr0 = ring->memptrs->ttbr0;
u32 context_idr = ring->memptrs->context_idr;
smmu_info_ptr->ttbr0 = ttbr0;
smmu_info_ptr->context_idr = context_idr;
record_ptr->wptr = get_wptr(ring);
/*
* The GPU will write the wptr we set above when we preempt. Reset
* restore_wptr to make sure that we don't write WPTR to the same
* thing twice. It's still possible subsequent submissions will update
* wptr again, in which case they will set the flag to true. This has
* to be protected by the lock for setting the flag and updating wptr
* to be atomic.
*/
ring->restore_wptr = false;
spin_unlock_irqrestore(&ring->preempt_lock, flags);
gpu_write64(gpu,
REG_A6XX_CP_CONTEXT_SWITCH_SMMU_INFO,
a6xx_gpu->preempt_smmu_iova[ring->id]);
gpu_write64(gpu,
REG_A6XX_CP_CONTEXT_SWITCH_PRIV_NON_SECURE_RESTORE_ADDR,
a6xx_gpu->preempt_iova[ring->id]);
a6xx_gpu->next_ring = ring;
/* Start a timer to catch a stuck preemption */
mod_timer(&a6xx_gpu->preempt_timer, jiffies + msecs_to_jiffies(10000));
/* Set the preemption state to triggered */
set_preempt_state(a6xx_gpu, PREEMPT_TRIGGERED);
/* Trigger the preemption */
gpu_write(gpu, REG_A6XX_CP_CONTEXT_SWITCH_CNTL, cntl);
}
static int preempt_init_ring(struct a6xx_gpu *a6xx_gpu,
struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
struct msm_gpu *gpu = &adreno_gpu->base;
struct drm_gem_object *bo = NULL;
phys_addr_t ttbr;
u64 iova = 0;
void *ptr;
int asid;
ptr = msm_gem_kernel_new(gpu->dev,
PREEMPT_RECORD_SIZE(adreno_gpu),
MSM_BO_WC | MSM_BO_MAP_PRIV, gpu->aspace, &bo, &iova);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
memset(ptr, 0, PREEMPT_RECORD_SIZE(adreno_gpu));
msm_gem_object_set_name(bo, "preempt_record ring%d", ring->id);
a6xx_gpu->preempt_bo[ring->id] = bo;
a6xx_gpu->preempt_iova[ring->id] = iova;
a6xx_gpu->preempt[ring->id] = ptr;
struct a6xx_preempt_record *record_ptr = ptr;
ptr = msm_gem_kernel_new(gpu->dev,
PREEMPT_SMMU_INFO_SIZE,
MSM_BO_WC | MSM_BO_MAP_PRIV | MSM_BO_GPU_READONLY,
gpu->aspace, &bo, &iova);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
memset(ptr, 0, PREEMPT_SMMU_INFO_SIZE);
msm_gem_object_set_name(bo, "preempt_smmu_info ring%d", ring->id);
a6xx_gpu->preempt_smmu_bo[ring->id] = bo;
a6xx_gpu->preempt_smmu_iova[ring->id] = iova;
a6xx_gpu->preempt_smmu[ring->id] = ptr;
struct a7xx_cp_smmu_info *smmu_info_ptr = ptr;
msm_iommu_pagetable_params(gpu->aspace->mmu, &ttbr, &asid);
smmu_info_ptr->magic = GEN7_CP_SMMU_INFO_MAGIC;
smmu_info_ptr->ttbr0 = ttbr;
smmu_info_ptr->asid = 0xdecafbad;
smmu_info_ptr->context_idr = 0;
/* Set up the defaults on the preemption record */
record_ptr->magic = A6XX_PREEMPT_RECORD_MAGIC;
record_ptr->info = 0;
record_ptr->data = 0;
record_ptr->rptr = 0;
record_ptr->wptr = 0;
record_ptr->cntl = MSM_GPU_RB_CNTL_DEFAULT;
record_ptr->rbase = ring->iova;
record_ptr->counter = 0;
record_ptr->bv_rptr_addr = rbmemptr(ring, bv_rptr);
return 0;
}
void a6xx_preempt_fini(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i;
for (i = 0; i < gpu->nr_rings; i++)
msm_gem_kernel_put(a6xx_gpu->preempt_bo[i], gpu->aspace);
}
void a6xx_preempt_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i;
/* No preemption if we only have one ring */
if (gpu->nr_rings <= 1)
return;
for (i = 0; i < gpu->nr_rings; i++) {
if (preempt_init_ring(a6xx_gpu, gpu->rb[i]))
goto fail;
}
/* TODO: make this configurable? */
a6xx_gpu->preempt_level = 1;
a6xx_gpu->uses_gmem = 1;
a6xx_gpu->skip_save_restore = 1;
timer_setup(&a6xx_gpu->preempt_timer, a6xx_preempt_timer, 0);
return;
fail:
/*
* On any failure our adventure is over. Clean up and
* set nr_rings to 1 to force preemption off
*/
a6xx_preempt_fini(gpu);
gpu->nr_rings = 1;
DRM_DEV_ERROR(&gpu->pdev->dev,
"preemption init failed, disabling preemption\n");
return;
}

View File

@ -36,6 +36,7 @@ struct msm_rbmemptrs {
volatile struct msm_gpu_submit_stats stats[MSM_GPU_SUBMIT_STATS_COUNT];
volatile u64 ttbr0;
volatile u32 context_idr;
};
struct msm_cp_state {
@ -101,6 +102,12 @@ struct msm_ringbuffer {
*/
spinlock_t preempt_lock;
/*
* Whether we skipped writing wptr and it needs to be updated in the
* future when the ring becomes current.
*/
bool restore_wptr;
/**
* cur_ctx_seqno:
*