mirror of
git://git.yoctoproject.org/linux-yocto.git
synced 2025-10-23 07:23:12 +02:00
1ee5aa765c
54 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
113691ce9f |
* Centralize global metadata infrastructure
* Use new TDX module features for exception suppression and RBP clobbering -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmeQO2IACgkQaDWVMHDJ krA/UQ/5Abo250b0p6dyez2EhDiKXVJ3v30iriiZvGT+mKDyxQQFvLYE+QDUfHz7 rKjJLEaHKt0wnHkSmBX05RpSieek2oS2ySpfIDxXW2tMjsap5a5WqcvFyOW6NcKy uwim2tRX6/54kr76smGNdGEeLPV7GL/FTAoub8pt/TCfL/88m+qEsQOvYg7RNvrV j9lOyL/Tt791E855cTgb1qHHFBu/I9siUWU2RTBKUPo2ILYAlSPS/xRiDe8W5fzS kPQxtwa5RSvhLBsz4lVbABJFZ1DmvY5TqxS0MMKwh/Dfm0jBXeod7alvMXrfhddF ikeBVKPuoB3u044rIGpoPqk4nM6ICowqI+H36D/4/bzXfz4zxRlIoPS5WdzS6ICm 23pS1MsoAUOYfWfJTgRtNvKJ7JKEhXgAZFVDWjgLF6kVVIwD0lu550fVTd0OIhaA mko4+RmaXx+OfumZV3HZsHauV39rCQOT4Ay5jNhPho73BFExOzK3m1fmIjf2nsKu 8Pk+2bhPQV7LvBOgc42BKVMusP/IW4O3dyzS8NnD2YO25gw+xd1oUNAb3LFGg9OJ vJXLuxlcHe6PmH9TdSZ+Lwj31vpbFtGTX5AOAzVbaIyfIJTuDUmTY5BX9eTW0/N7 iLiNaY713mapkDBbKqWBsiBi1SEVuDZyrixujUiMMrGUwXRCAH4= =nzuM -----END PGP SIGNATURE----- Merge tag 'x86_tdx_for_6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 TDX updates from Dave Hansen: "Intel Trust Domain updates. The existing TDX code needs a _bit_ of metadata from the TDX module. But KVM is going to need a bunch more very shortly. Rework the interface with the TDX module to be more consistent and handle the new higher volume. The TDX module has added a few new features. The first is a promise not to clobber RBP under any circumstances. Basically the kernel now will refuse to use any modules that don't have this promise. Second, enable the new "REDUCE_VE" feature. This ensures that the TDX module will not send some silly virtualization exceptions that the guest had no good way to handle anyway. - Centralize global metadata infrastructure - Use new TDX module features for exception suppression and RBP clobbering" * tag 'x86_tdx_for_6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/virt/tdx: Require the module to assert it has the NO_RBP_MOD mitigation x86/virt/tdx: Switch to use auto-generated global metadata reading code x86/virt/tdx: Use dedicated struct members for PAMT entry sizes x86/virt/tdx: Use auto-generated code to read global metadata x86/virt/tdx: Start to track all global metadata in one structure x86/virt/tdx: Rename 'struct tdx_tdmr_sysinfo' to reflect the spec better x86/tdx: Dump attributes and TD_CTLS on boot x86/tdx: Disable unnecessary virtualization exceptions |
||
![]() |
6f5c71cc42 |
x86/virt/tdx: Require the module to assert it has the NO_RBP_MOD mitigation
Old TDX modules can clobber RBP in the TDH.VP.ENTER SEAMCALL. However RBP is used as frame pointer in the x86_64 calling convention, and clobbering RBP could result in bad things like being unable to unwind the stack if any non-maskable exceptions (NMI, #MC etc) happens in that gap. A new "NO_RBP_MOD" feature was introduced to more recent TDX modules to not clobber RBP. KVM will need to use the TDH.VP.ENTER SEAMCALL to run TDX guests. It won't be safe to run TDX guests w/o this feature. To prevent it, just don't initialize the TDX module if this feature is not supported [1]. Note the bit definitions of TDX_FEATURES0 are not auto-generated in tdx_global_metadata.h. Manually define a macro for it in "tdx.h". Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/fc0e8ab7-86d4-4428-be31-82e1ece6dd21@intel.com/ [1] Link: https://lore.kernel.org/all/76ae5025502c84d799e3a56a6fc4f69a82da8f93.1734188033.git.kai.huang%40intel.com |
||
![]() |
fae43b24a6 |
x86/virt/tdx: Switch to use auto-generated global metadata reading code
Continue the process to have a centralized solution for TDX global metadata reading. Now that the new autogenerated solution is ready for use, switch to it and remove the old one. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/fc025d1e13b92900323f47cfe9aac3157bf08ee7.1734188033.git.kai.huang%40intel.com |
||
![]() |
6bfb77f489 |
x86/virt/tdx: Use dedicated struct members for PAMT entry sizes
Currently, the 'struct tdmr_sys_info_tdmr' which includes TDMR related fields defines the PAMT entry sizes for TDX supported page sizes (4KB, 2MB and 1GB) as an array: struct tdx_sys_info_tdmr { ... u16 pamt_entry_sizes[TDX_PS_NR]; }; PAMT entry sizes are needed when allocating PAMTs for each TDMR. Using the array to contain PAMT entry sizes reduces the number of arguments that need to be passed when calling tdmr_set_up_pamt(). It also makes the code pattern like below clearer: for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) { pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz, pamt_entry_size[pgsz]); tdmr_pamt_size += pamt_size[pgsz]; } However, the auto-generated metadata reading code generates a structure member for each field. The 'global_metadata.json' has a dedicated field for each PAMT entry size, and the new 'struct tdx_sys_info_tdmr' looks like: struct tdx_sys_info_tdmr { ... u16 pamt_4k_entry_size; u16 pamt_2m_entry_size; u16 pamt_1g_entry_size; }; Prepare to use the autogenerated code by making the existing 'struct tdx_sys_info_tdmr' look like the generated one. When passing to tdmrs_set_up_pamt_all(), build a local array of PAMT entry sizes from the structure so the code to allocate PAMTs can stay the same. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/ccf46f3dacb01be1fb8309592616d443ac17caba.1734188033.git.kai.huang%40intel.com |
||
![]() |
04a7bc7316 |
x86/virt/tdx: Use auto-generated code to read global metadata
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. Currently the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. There are needs to read more global metadata fields for future use: - Supported features ("TDX_FEATURES0") to fail module initialization when the module doesn't support "not clobbering host RBP when exiting from TDX guest" feature [1]. - KVM TDX baseline support and other features like TDX Connect will need to read more. The current global metadata reading code has limitations (e.g., it only has a primitive helper to read metadata field with 16-bit element size, while TDX supports 8/16/32/64 bits metadata element sizes). It needs tweaks in order to read more metadata fields. But even with the tweaks, when new code is added to read a new field, the reviewers will still need to review against the spec to make sure the new code doesn't screw up things like using the wrong metadata field ID (each metadata field is associated with a unique field ID, which is a TDX-defined u64 constant) etc. TDX documents all global metadata fields in a 'global_metadata.json' file as part of TDX spec [2]. JSON format is machine readable. Instead of tweaking the metadata reading code, use a script to generate the code so that: 1) Using the generated C is simple. 2) Adding a field is simple, e.g., the script just pulls the field ID out of the JSON for a given field thus no manual review is needed. Specifically, to match the layout of the 'struct tdx_sys_info' and its sub-structures, the script uses a table with each entry containing the the name of the sub-structures (which reflects the "Class") and the "Field Name" of all its fields, and auto-generate: 1) The 'struct tdx_sys_info' and all 'struct tdx_sys_info_xx' sub-structures in 'tdx_global_metadata.h'. 2) The main function 'get_tdx_sys_info()' which reads all metadata to 'struct tdx_sys_info' and the 'get_tdx_sys_info_xx()' functions which read 'struct tdx_sys_info_xx()' in 'tdx_global_metadata.c'. Using the generated C is simple: 1) include "tdx_global_metadata.h" to the local "tdx.h"; 2) explicitly include "tdx_global_metadata.c" to the local "tdx.c" after the read_sys_metadata_field() primitive (which is a wrapper of TDH.SYS.RD SEAMCALL to read global metadata). Adding a field is also simple: 1) just add the new field to an existing structure, or add it with a new structure; 2) re-run the script to generate the new code; 3) update the existing tdx_global_metadata.{hc} with the new ones. For now, use the auto-generated code to read the TDMR related fields and the aforesaid metadata field "TDX_FEATURES0". The tdx_global_metadata.{hc} can be generated by running below: #python tdx_global_metadata.py global_metadata.json \ tdx_global_metadata.h tdx_global_metadata.c .. where the 'global_metadata.json' can be fetched from [2] and the 'tdx_global_metadata.py' can be found from [3]. Co-developed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/fc0e8ab7-86d4-4428-be31-82e1ece6dd21@intel.com/ [1] Link: https://cdrdv2.intel.com/v1/dl/getContent/795381 [2] Link: https://lore.kernel.org/762a50133300710771337398284567b299a86f67.camel@intel.com/ [3] Link: https://lore.kernel.org/all/cbe3f12b1e5479399b53f4873f2ff783d9fc669b.1734188033.git.kai.huang%40intel.com |
||
![]() |
c4e0862a62 |
x86/virt/tdx: Start to track all global metadata in one structure
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. Today the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. KVM will need to read additional metadata fields to run TDX guests. Move towards having the TDX host core-kernel provide a centralized, canonical, and immutable structure for the global metadata that comes out from the TDX module for all kernel components to use. As the first step, introduce a new 'struct tdx_sys_info' to track all global metadata fields. TDX categorizes global metadata fields into different "Classes". E.g., the TDMR related fields are under class "TDMR Info". Instead of making 'struct tdx_sys_info' a plain structure to contain all metadata fields, organize them in smaller structures based on the "Class". This allows those metadata fields to be used in finer granularity thus makes the code clearer. E.g., construct_tdmrs() can just take the structure which contains "TDMR Info" metadata fields. Add get_tdx_sys_info() as the placeholder to read all metadata fields. Have it only call get_tdx_sys_info_tdmr() to read TDMR related fields for now. Place get_tdx_sys_info() as the first step of init_tdx_module() to enable early prerequisite checks on the metadata to support early module initialization abort. This results in moving get_tdx_sys_info_tdmr() to be before build_tdx_memlist(), but this is fine because there are no dependencies between these two functions. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/bfacb4e90527cf79d4be0d1753e6f318eea21118.1734188033.git.kai.huang%40intel.com |
||
![]() |
e8aa393b0a |
x86/virt/tdx: Rename 'struct tdx_tdmr_sysinfo' to reflect the spec better
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. TDX organizes those metadata fields by "Classes" based on the meaning of those fields. E.g., for now the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. Those fields are defined under class "TDMR Info". Today the kernel reads some of the global metadata to initialize the TDX module. KVM will need to read additional metadata fields to run TDX guests. Move towards having the TDX host core-kernel provide a centralized, canonical, and immutable structure for the global metadata that comes out from the TDX module for all kernel components to use. More specifically, prepare the code to end up with an organization like: struct tdx_sys_info { struct tdx_sys_info_classA a; struct tdx_sys_info_classB b; ... }; Currently the kernel organizes all fields under "TDMR Info" class in 'struct tdx_tdmr_sysinfo'. Prepare for the above by renaming the structure to 'struct tdx_sys_info_tdmr' to follow the class name better. No functional change intended. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/de165d09e0b571cfeb119a368f4be6e2888ebb93.1734188033.git.kai.huang%40intel.com |
||
![]() |
8ae3291f77 |
x86/sev: Add full support for a segmented RMP table
A segmented RMP table allows for improved locality of reference between the memory protected by the RMP and the RMP entries themselves. Add support to detect and initialize a segmented RMP table with multiple segments as configured by the system BIOS. While the RMPREAD instruction will be used to read an RMP entry in a segmented RMP, initialization and debugging capabilities will require the mapping of the segments. The RMP_CFG MSR indicates if segmented RMP support is enabled and, if enabled, the amount of memory that an RMP segment covers. When segmented RMP support is enabled, the RMP_BASE MSR points to the start of the RMP bookkeeping area, which is 16K in size. The RMP Segment Table (RST) is located immediately after the bookkeeping area and is 4K in size. The RST contains up to 512 8-byte entries that identify the location of the RMP segment and amount of memory mapped by the segment (which must be less than or equal to the configured segment size). The physical address that is covered by a segment is based on the segment size and the index of the segment in the RST. The RMP entry for a physical address is based on the offset within the segment. For example, if the segment size is 64GB (0x1000000000 or 1 << 36), then physical address 0x9000800000 is RST entry 9 (0x9000800000 >> 36) and RST entry 9 covers physical memory 0x9000000000 to 0x9FFFFFFFFF. The RMP entry index within the RMP segment is the physical address AND-ed with the segment mask, 64GB - 1 (0xFFFFFFFFF), and then right-shifted 12 bits or PHYS_PFN(0x9000800000 & 0xFFFFFFFFF), which is 0x800. CPUID 0x80000025_EBX[9:0] describes the number of RMP segments that can be cached by the hardware. Additionally, if CPUID 0x80000025_EBX[10] is set, then the number of actual RMP segments defined cannot exceed the number of RMP segments that can be cached and can be used as a maximum RST index. [ bp: Unify printk hex format specifiers. ] Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Link: https://lore.kernel.org/r/02afd0ffd097a19cb6e5fb1bb76eb110496c5b11.1734101742.git.thomas.lendacky@amd.com |
||
![]() |
0f14af0d1d |
x86/sev: Treat the contiguous RMP table as a single RMP segment
In preparation for support of a segmented RMP table, treat the contiguous RMP table as a segmented RMP table with a single segment covering all of memory. By treating a contiguous RMP table as a single segment, much of the code that initializes and accesses the RMP can be re-used. Segmented RMP tables can have up to 512 segment entries. Each segment will have metadata associated with it to identify the segment location, the segment size, etc. The segment data and the physical address are used to determine the index of the segment within the table and then the RMP entry within the segment. For an actual segmented RMP table environment, much of the segment information will come from a configuration MSR. For the contiguous RMP, though, much of the information will be statically defined. [ bp: Touchups, explain array_index_nospec() usage. ] Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Link: https://lore.kernel.org/r/8c40fbc9c5217f0d79b37cf861eff03ab0330bef.1733172653.git.thomas.lendacky@amd.com |
||
![]() |
ac517965a5 |
x86/sev: Map only the RMP table entries instead of the full RMP range
In preparation for support of a segmented RMP table, map only the RMP table entries. The RMP bookkeeping area is only ever accessed when first enabling SNP and does not need to remain mapped. To accomplish this, split the initialization of the RMP bookkeeping area and the initialization of the RMP entry area. The RMP bookkeeping area will be mapped only while it is being initialized. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Reviewed-by: Ashish Kalra <ashish.kalra@amd.com> Link: https://lore.kernel.org/r/22f179998d319834f49c13a8c01187fbf0fd308d.1733172653.git.thomas.lendacky@amd.com |
||
![]() |
e2f3d40df8 |
x86/sev: Move the SNP probe routine out of the way
To make patch review easier for the segmented RMP support, move the SNP probe function out from in between the initialization-related routines. No functional change. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Link: https://lore.kernel.org/r/6c2975bbf132d567dd12e1435be1d18c0bf9131c.1733172653.git.thomas.lendacky@amd.com |
||
![]() |
0cbc025841 |
x86/sev: Add support for the RMPREAD instruction
The RMPREAD instruction returns an architecture defined format of an RMP table entry. This is the preferred method for examining RMP entries. The instruction is advertised in CPUID 0x8000001f_EAX[21]. Use this instruction when available. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Reviewed-by: Ashish Kalra <ashish.kalra@amd.com> Link: https://lore.kernel.org/r/72c734ac8b324bbc0c839b2c093a11af4a8881fa.1733172653.git.thomas.lendacky@amd.com |
||
![]() |
3e43c60eb3 |
x86/sev: Prepare for using the RMPREAD instruction to access the RMP
The RMPREAD instruction returns an architecture defined format of an RMP entry. This is the preferred method for examining RMP entries. In preparation for using the RMPREAD instruction, convert the existing code that directly accesses the RMP to map the raw RMP information into the architecture defined format. RMPREAD output returns a status bit for the 2MB region status. If the input page address is 2MB aligned and any other pages within the 2MB region are assigned, then 2MB region status will be set to 1. Otherwise, the 2MB region status will be set to 0. For systems that do not support RMPREAD, calculating this value would require looping over all of the RMP table entries within that range until one is found with the assigned bit set. Since this bit is not defined in the current format, and so not used today, do not incur the overhead associated with calculating it. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Nikunj A Dadhania <nikunj@amd.com> Reviewed-by: Neeraj Upadhyay <Neeraj.Upadhyay@amd.com> Link: https://lore.kernel.org/r/da49d5af1eb7f9039f35f14a32ca091efb2dd818.1733172653.git.thomas.lendacky@amd.com |
||
![]() |
55db8eb456 |
- Do the proper memory conversion of guest memory in order to be able to kexec
kernels in SNP guests along with other adjustments and cleanups to that effect - Start converting and moving functionality from the sev-guest driver into core code with the purpose of supporting the secure TSC SNP feature where the hypervisor cannot influence the TSC exposed to the guest anymore - Add a "nosnp" cmdline option in order to be able to disable SNP support in the hypervisor and thus free-up resources which are not going to be used - Cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmc7ZToACgkQEsHwGGHe VUp61hAArA8taJaGUSdoe3sN60yRWCTe30QiDLvUrDGqmPHbBnDpdYsoaZujkQMI 334piSWWu/pB6meO93uwv8X/ZO0ryOw46RK3szTz/RhBB5pTO3NbAj1zMF5q2KUy a+SYbZffV+qBUEpGujGrqrwT7X3U70yCKJFaZQOGvyYFzo+kyx6euqlYP+StOD+D ph7SDrXv0N0uU/2OiwCzF0cKvAuNHG2Cfn3kqSKvcZ+NWF3BKmw1IkgFA9f05P+j mOkc+1jCbi26b94MSJHSL33iRtbD0NgUzT9F2tw9Qszw1BQ5Er30Y45ywoudAhsn VrpMhBwWRCUdakQ2PsI7O8WB4gnBdWpEuzS2Ssqa1akB+pggH2xQzVb5EznmbzlS gz/SqUP75ijTT/oGh+C/hKAES3pmO4pH48J7llOKzb8YpoxxzjSEVb2pVbLzNdIV +it12Cap0lW+CTNGF4p2TbuKXKkE1LiGya1JMymQiZL8quCBYJIQUttiBvBg8Ac1 oCw2DXQZsjDw55Hwwhr95J4FuY4+iQd+o1GgRDQ4MEqaYFEfdcFRA1YCbMHgiAzu NOGwjrQ2PB5xGST34qobGtk7Xt2nIilDvl5K5Co2E4s14NLrlBHo2uq33d0unlIZ BJMrHG/IWNjuHbKl/vM05fuiKEIvpL5qTKz7oVL6tX8Zphf6ljU= =C431 -----END PGP SIGNATURE----- Merge tag 'x86_sev_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Do the proper memory conversion of guest memory in order to be able to kexec kernels in SNP guests along with other adjustments and cleanups to that effect - Start converting and moving functionality from the sev-guest driver into core code with the purpose of supporting the secure TSC SNP feature where the hypervisor cannot influence the TSC exposed to the guest anymore - Add a "nosnp" cmdline option in order to be able to disable SNP support in the hypervisor and thus free-up resources which are not going to be used - Cleanups [ Reminding myself about the endless TLA's again: SEV is the AMD Secure Encrypted Virtualization - Linus ] * tag 'x86_sev_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sev: Cleanup vc_handle_msr() x86/sev: Convert shared memory back to private on kexec x86/mm: Refactor __set_clr_pte_enc() x86/boot: Skip video memory access in the decompressor for SEV-ES/SNP virt: sev-guest: Carve out SNP message context structure virt: sev-guest: Reduce the scope of SNP command mutex virt: sev-guest: Consolidate SNP guest messaging parameters to a struct x86/sev: Cache the secrets page address x86/sev: Handle failures from snp_init() virt: sev-guest: Use AES GCM crypto library x86/virt: Provide "nosnp" boot option for sev kernel command line x86/virt: Move SEV-specific parsing into arch/x86/virt/svm |
||
![]() |
88a921aa3c |
x86/sev: Ensure that RMP table fixups are reserved
The BIOS reserves RMP table memory via e820 reservations. This can still lead to RMP page faults during kexec if the host tries to access memory within the same 2MB region. Commit |
||
![]() |
2db67aaca5 |
x86/virt: Provide "nosnp" boot option for sev kernel command line
Provide a "nosnp" kernel command line option to prevent enabling of the RMP and SEV-SNP features in the host/hypervisor. Not initializing the RMP removes system overhead associated with RMP checks. [ bp: Actually make it a HV-only cmdline option. ] Co-developed-by: Eric Van Tassell <Eric.VanTassell@amd.com> Signed-off-by: Eric Van Tassell <Eric.VanTassell@amd.com> Signed-off-by: Pavan Kumar Paluri <papaluri@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20241014130948.1476946-3-papaluri@amd.com |
||
![]() |
4ae47fa7e8 |
x86/virt: Move SEV-specific parsing into arch/x86/virt/svm
Move SEV-specific kernel command line option parsing support from arch/x86/coco/sev/core.c to arch/x86/virt/svm/cmdline.c so that both host and guest related SEV command line options can be supported. No functional changes intended. Signed-off-by: Pavan Kumar Paluri <papaluri@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20241014130948.1476946-2-papaluri@amd.com |
||
![]() |
408323581b |
- Add support for running the kernel in a SEV-SNP guest, over a Secure
VM Service Module (SVSM). When running over a SVSM, different services can run at different protection levels, apart from the guest OS but still within the secure SNP environment. They can provide services to the guest, like a vTPM, for example. This series adds the required facilities to interface with such a SVSM module. - The usual fixlets, refactoring and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmaWQuoACgkQEsHwGGHe VUrmEw/+KqM5DK5cfpue3gn0RfH6OYUoFxOdYhGkG53qUMc3c3ka5zPVqLoHPkzp WPXha0Z5pVdrcD9mKtVUW9RIuLjInCM/mnoNc3tIUL+09xxemAjyG1+O+4kodiU7 sZ5+HuKUM2ihoC4Rrm+ApRrZfH4+WcgQNvFky77iObWVBo4yIscS7Pet/MYFvuuz zNaGp2SGGExDeoX/pMQNI3S9FKYD26HR17AUI3DHpS0teUl2npVi4xDjFVYZh0dQ yAhTKbSX3Q6ekDDkvAQUbxvWTJw9qoIsvLO9dvZdx6SSWmzF9IbuECpQKGQwYcp+ pVtcHb+3MwfB+nh5/fHyssRTOZp1UuI5GcmLHIQhmhQwCqPgzDH6te4Ud1ovkxOu 3GoBre7KydnQIyv12I+56/ZxyPbjHWmn8Fg106nAwGTdGbBJhfcVYfPmPvwpI4ib nXpjypvM8FkLzLAzDK6GE9QiXqJJlxOn7t66JiH/FkXR4gnY3eI8JLMfnm5blAb+ 97LC7oyeqtstWth9/4tpCILgPR2tirrMQGjUXttgt+2VMzqnEamnFozsKvR95xok 4j6ulKglZjdpn0ixHb2vAzAcOJvD7NP147jtCmXH7M6/f9H1Lih3MKdxX98MVhWB wSp16udXHzu5lF45J0BJG8uejSgBI2y51jc92HLX7kRULOGyaEo= =u15r -----END PGP SIGNATURE----- Merge tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Add support for running the kernel in a SEV-SNP guest, over a Secure VM Service Module (SVSM). When running over a SVSM, different services can run at different protection levels, apart from the guest OS but still within the secure SNP environment. They can provide services to the guest, like a vTPM, for example. This series adds the required facilities to interface with such a SVSM module. - The usual fixlets, refactoring and cleanups [ And as always: "SEV" is AMD's "Secure Encrypted Virtualization". I can't be the only one who gets all the newer x86 TLA's confused, can I? - Linus ] * tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation/ABI/configfs-tsm: Fix an unexpected indentation silly x86/sev: Do RMP memory coverage check after max_pfn has been set x86/sev: Move SEV compilation units virt: sev-guest: Mark driver struct with __refdata to prevent section mismatch x86/sev: Allow non-VMPL0 execution when an SVSM is present x86/sev: Extend the config-fs attestation support for an SVSM x86/sev: Take advantage of configfs visibility support in TSM fs/configfs: Add a callback to determine attribute visibility sev-guest: configfs-tsm: Allow the privlevel_floor attribute to be updated virt: sev-guest: Choose the VMPCK key based on executing VMPL x86/sev: Provide guest VMPL level to userspace x86/sev: Provide SVSM discovery support x86/sev: Use the SVSM to create a vCPU when not in VMPL0 x86/sev: Perform PVALIDATE using the SVSM when not at VMPL0 x86/sev: Use kernel provided SVSM Calling Areas x86/sev: Check for the presence of an SVSM in the SNP secrets page x86/irqflags: Provide native versions of the local_irq_save()/restore() |
||
![]() |
0440feb090 |
x86/sev: Do RMP memory coverage check after max_pfn has been set
The RMP table is probed early in the boot process before max_pfn has been
set, so the logic to check if the RMP covers all of system memory is not
valid.
Move the RMP memory coverage check from snp_probe_rmptable_info() into
snp_rmptable_init(), which is well after max_pfn has been set. Also, fix
the calculation to use PFN_UP instead of PHYS_PFN, in order to compute
the required RMP size properly.
Fixes:
|
||
![]() |
189e8d4b98 |
x86/virt/tdx: Switch to new Intel CPU model defines
New CPU #defines encode vendor and family as well as model. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240520224620.9480-31-tony.luck%40intel.com |
||
![]() |
c4273a6692 |
x86/cleanups changes for v6.10:
- Fix function prototypes to address clang function type cast warnings in the math-emu code - Reorder definitions in <asm/msr-index.h> - Remove unused code - Fix typos - Simplify #include sections Signed-off-by: Ingo Molnar <mingo@kernel.org> -----BEGIN PGP SIGNATURE----- iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBvHQRHG1pbmdvQGtl cm5lbC5vcmcACgkQEnMQ0APhK1jeSBAAqPMBFEYc5nge52ONZ8bzADEPQ6pBohgO xfONNuUpjtQ/Xtnhc8FGoFf+C9pnOlf2eX2VfusqvA6M9XJDgZxu1M6QZSOHuILo 4T4opzTj7VYLbo1DQGLcPMymW/rhJNwKdRwhHr4SNIk9YcIJS7uyxtnLNvqjcCsB /iMw2/mhlXRXN1MP1Eg4YM6BXJ4qYkjx79gzKEGbq6tJgUahR37LGvw1aq+GAiap Wbo0o2jLgu8ByZXKEfUmUnW5jMR02LeUBg1OqDjaziO48df6eUi4ngaCoSA5qIew SDKZ1uq3qTOlDtGlxIGlBznM/HjvPejr+XQXKukCn+B9N62PMtR4fOS5q/4ODTD+ wQttK0rg/fLpp1zgv33ey2N0qpbUxbtxC4JkA4DPfqstO/uiQXTNJM6H68Pqr9p/ 6TuW+HYrsgUdi54X4KTEHIAGOSUP0bjJrtSP6Tzxt9+epOQl+ymHaR07a4rRn2cw SnK7CQcWsjv90PUkCsb3F7gZtYVOkb4C0ZCPn2AlSPo+y0YnBadG+S6uQ6suFwxA kX5QNf+OPmqJZz/muqGQ+c7Swc9ONPdv6RSt35nqp2vz0ugp4Q1FNUciQGfOLj2V O0KaFVcdFvlkLGgxgYlGZJKxWKeuhh+L5IHyaL5fy7nOUhJtI+djoF5ZaCfR0Ofp Piqz80R6w9I= =6pkd -----END PGP SIGNATURE----- Merge tag 'x86-cleanups-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Ingo Molnar: - Fix function prototypes to address clang function type cast warnings in the math-emu code - Reorder definitions in <asm/msr-index.h> - Remove unused code - Fix typos - Simplify #include sections * tag 'x86-cleanups-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/pci/ce4100: Remove unused 'struct sim_reg_op' x86/msr: Move ARCH_CAP_XAPIC_DISABLE bit definition to its rightful place x86/math-emu: Fix function cast warnings x86/extable: Remove unused fixup type EX_TYPE_COPY x86/rtc: Remove unused intel-mid.h x86/32: Remove unused IA32_STACK_TOP and two externs x86/head: Simplify relative include path to xen-head.S x86/fred: Fix typo in Kconfig description x86/syscall/compat: Remove ia32_unistd.h x86/syscall/compat: Remove unused macro __SYSCALL_ia32_NR x86/virt/tdx: Remove duplicate include x86/xen: Remove duplicate #include |
||
![]() |
400fea4b96 |
x86/sev: Add callback to apply RMP table fixups for kexec
Handle cases where the RMP table placement in the BIOS is not 2M aligned
and the kexec-ed kernel could try to allocate from within that chunk
which then causes a fatal RMP fault.
The kexec failure is illustrated below:
SEV-SNP: RMP table physical range [0x0000007ffe800000 - 0x000000807f0fffff]
BIOS-provided physical RAM map:
BIOS-e820: [mem 0x0000000000000000-0x000000000008efff] usable
BIOS-e820: [mem 0x000000000008f000-0x000000000008ffff] ACPI NVS
...
BIOS-e820: [mem 0x0000004080000000-0x0000007ffe7fffff] usable
BIOS-e820: [mem 0x0000007ffe800000-0x000000807f0fffff] reserved
BIOS-e820: [mem 0x000000807f100000-0x000000807f1fefff] usable
As seen here in the e820 memory map, the end range of the RMP table is not
aligned to 2MB and not reserved but it is usable as RAM.
Subsequently, kexec -s (KEXEC_FILE_LOAD syscall) loads it's purgatory
code and boot_param, command line and other setup data into this RAM
region as seen in the kexec logs below, which leads to fatal RMP fault
during kexec boot.
Loaded purgatory at 0x807f1fa000
Loaded boot_param, command line and misc at 0x807f1f8000 bufsz=0x1350 memsz=0x2000
Loaded 64bit kernel at 0x7ffae00000 bufsz=0xd06200 memsz=0x3894000
Loaded initrd at 0x7ff6c89000 bufsz=0x4176014 memsz=0x4176014
E820 memmap:
0000000000000000-000000000008efff (1)
000000000008f000-000000000008ffff (4)
0000000000090000-000000000009ffff (1)
...
0000004080000000-0000007ffe7fffff (1)
0000007ffe800000-000000807f0fffff (2)
000000807f100000-000000807f1fefff (1)
000000807f1ff000-000000807fffffff (2)
nr_segments = 4
segment[0]: buf=0x00000000e626d1a2 bufsz=0x4000 mem=0x807f1fa000 memsz=0x5000
segment[1]: buf=0x0000000029c67bd6 bufsz=0x1350 mem=0x807f1f8000 memsz=0x2000
segment[2]: buf=0x0000000045c60183 bufsz=0xd06200 mem=0x7ffae00000 memsz=0x3894000
segment[3]: buf=0x000000006e54f08d bufsz=0x4176014 mem=0x7ff6c89000 memsz=0x4177000
kexec_file_load: type:0, start:0x807f1fa150 head:0x1184d0002 flags:0x0
Check if RMP table start and end physical range in the e820 tables are
not aligned to 2MB and in that case map this range to reserved in all
the three e820 tables.
[ bp: Massage. ]
Fixes:
|
||
![]() |
0ecaefb303 |
x86/CPU/AMD: Track SNP host status with cc_platform_*()
The host SNP worthiness can determined later, after alternatives have
been patched, in snp_rmptable_init() depending on cmdline options like
iommu=pt which is incompatible with SNP, for example.
Which means that one cannot use X86_FEATURE_SEV_SNP and will need to
have a special flag for that control.
Use that newly added CC_ATTR_HOST_SEV_SNP in the appropriate places.
Move kdump_sev_callback() to its rightful place, while at it.
Fixes:
|
||
![]() |
3f1a9bc5d8 |
x86/build: Use obj-y to descend into arch/x86/virt/
Commit
|
||
![]() |
27d45fc7df |
x86/virt/tdx: Remove duplicate include
./arch/x86/virt/vmx/tdx/tdx.c: linux/acpi.h is included more than once. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240322061741.9869-1-jiapeng.chong@linux.alibaba.com Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=8609 |
||
![]() |
8ef979584e |
crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
Add a kdump safe version of sev_firmware_shutdown() and register it as a crash_kexec_post_notifier so it will be invoked during panic/crash to do SEV/SNP shutdown. This is required for transitioning all IOMMU pages to reclaim/hypervisor state, otherwise re-init of IOMMU pages during crashdump kernel boot fails and panics the crashdump kernel. This panic notifier runs in atomic context, hence it ensures not to acquire any locks/mutexes and polls for PSP command completion instead of depending on PSP command completion interrupt. [ mdr: Remove use of "we" in comments. ] Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-21-michael.roth@amd.com |
||
![]() |
8dac642999 |
x86/sev: Introduce an SNP leaked pages list
Pages are unsafe to be released back to the page-allocator if they have been transitioned to firmware/guest state and can't be reclaimed or transitioned back to hypervisor/shared state. In this case, add them to an internal leaked pages list to ensure that they are not freed or touched/accessed to cause fatal page faults. [ mdr: Relocate to arch/x86/virt/svm/sev.c ] Suggested-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Link: https://lore.kernel.org/r/20240126041126.1927228-16-michael.roth@amd.com |
||
![]() |
661b1c6169 |
x86/sev: Adjust the directmap to avoid inadvertent RMP faults
If the kernel uses a 2MB or larger directmap mapping to write to an address, and that mapping contains any 4KB pages that are set to private in the RMP table, an RMP #PF will trigger and cause a host crash. SNP-aware code that owns the private PFNs will never attempt such a write, but other kernel tasks writing to other PFNs in the range may trigger these checks inadvertently due to writing to those other PFNs via a large directmap mapping that happens to also map a private PFN. Prevent this by splitting any 2MB+ mappings that might end up containing a mix of private/shared PFNs as a result of a subsequent RMPUPDATE for the PFN/rmp_level passed in. Another way to handle this would be to limit the directmap to 4K mappings in the case of hosts that support SNP, but there is potential risk for performance regressions of certain host workloads. Handling it as-needed results in the directmap being slowly split over time, which lessens the risk of a performance regression since the more the directmap gets split as a result of running SNP guests, the more likely the host is being used primarily to run SNP guests, where a mostly-split directmap is actually beneficial since there is less chance of TLB flushing and cpa_lock contention being needed to perform these splits. Cases where a host knows in advance it wants to primarily run SNP guests and wishes to pre-split the directmap can be handled by adding a tuneable in the future, but preliminary testing has shown this to not provide a signficant benefit in the common case of guests that are backed primarily by 2MB THPs, so it does not seem to be warranted currently and can be added later if a need arises in the future. Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Link: https://lore.kernel.org/r/20240126041126.1927228-12-michael.roth@amd.com |
||
![]() |
2c35819ee0 |
x86/sev: Add helper functions for RMPUPDATE and PSMASH instruction
The RMPUPDATE instruction updates the access restrictions for a page via its corresponding entry in the RMP Table. The hypervisor will use the instruction to enforce various access restrictions on pages used for confidential guests and other specialized functionality. See APM3 for details on the instruction operations. The PSMASH instruction expands a 2MB RMP entry in the RMP table into a corresponding set of contiguous 4KB RMP entries while retaining the state of the validated bit from the original 2MB RMP entry. The hypervisor will use this instruction in cases where it needs to re-map a page as 4K rather than 2MB in a guest's nested page table. Add helpers to make use of these instructions. [ mdr: add RMPUPDATE retry logic for transient FAIL_OVERLAP errors. ] Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Link: https://lore.kernel.org/r/20240126041126.1927228-11-michael.roth@amd.com |
||
![]() |
1f568d3636 |
x86/fault: Add helper for dumping RMP entries
This information will be useful for debugging things like page faults due to RMP access violations and RMPUPDATE failures. [ mdr: move helper to standalone patch, rework dump logic as suggested by Boris. ] Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-8-michael.roth@amd.com |
||
![]() |
94b36bc244 |
x86/sev: Add RMP entry lookup helpers
Add a helper that can be used to access information contained in the RMP entry corresponding to a particular PFN. This will be needed to make decisions on how to handle setting up mappings in the NPT in response to guest page-faults and handling things like cleaning up pages and setting them back to the default hypervisor-owned state when they are no longer being used for private data. [ mdr: separate 'assigned' indicator from return code, and simplify function signatures for various helpers. ] Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-7-michael.roth@amd.com |
||
![]() |
216d106c7f |
x86/sev: Add SEV-SNP host initialization support
The memory integrity guarantees of SEV-SNP are enforced through a new structure called the Reverse Map Table (RMP). The RMP is a single data structure shared across the system that contains one entry for every 4K page of DRAM that may be used by SEV-SNP VMs. The APM Volume 2 section on Secure Nested Paging (SEV-SNP) details a number of steps needed to detect/enable SEV-SNP and RMP table support on the host: - Detect SEV-SNP support based on CPUID bit - Initialize the RMP table memory reported by the RMP base/end MSR registers and configure IOMMU to be compatible with RMP access restrictions - Set the MtrrFixDramModEn bit in SYSCFG MSR - Set the SecureNestedPagingEn and VMPLEn bits in the SYSCFG MSR - Configure IOMMU RMP table entry format is non-architectural and it can vary by processor. It is defined by the PPR document for each respective CPU family. Restrict SNP support to CPU models/families which are compatible with the current RMP table entry format to guard against any undefined behavior when running on other system types. Future models/support will handle this through an architectural mechanism to allow for broader compatibility. SNP host code depends on CONFIG_KVM_AMD_SEV config flag which may be enabled even when CONFIG_AMD_MEM_ENCRYPT isn't set, so update the SNP-specific IOMMU helpers used here to rely on CONFIG_KVM_AMD_SEV instead of CONFIG_AMD_MEM_ENCRYPT. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Co-developed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Co-developed-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Link: https://lore.kernel.org/r/20240126041126.1927228-5-michael.roth@amd.com |
||
![]() |
70060463cb |
x86/mce: Differentiate real hardware #MCs from TDX erratum ones
The first few generations of TDX hardware have an erratum. Triggering it in Linux requires some kind of kernel bug involving relatively exotic memory writes to TDX private memory and will manifest via spurious-looking machine checks when reading the affected memory. Make an effort to detect these TDX-induced machine checks and spit out a new blurb to dmesg so folks do not think their hardware is failing. == Background == Virtually all kernel memory accesses operations happen in full cachelines. In practice, writing a "byte" of memory usually reads a 64 byte cacheline of memory, modifies it, then writes the whole line back. Those operations do not trigger this problem. This problem is triggered by "partial" writes where a write transaction of less than cacheline lands at the memory controller. The CPU does these via non-temporal write instructions (like MOVNTI), or through UC/WC memory mappings. The issue can also be triggered away from the CPU by devices doing partial writes via DMA. == Problem == A partial write to a TDX private memory cacheline will silently "poison" the line. Subsequent reads will consume the poison and generate a machine check. According to the TDX hardware spec, neither of these things should have happened. To add insult to injury, the Linux machine code will present these as a literal "Hardware error" when they were, in fact, a software-triggered issue. == Solution == In the end, this issue is hard to trigger. Rather than do something rash (and incomplete) like unmap TDX private memory from the direct map, improve the machine check handler. Currently, the #MC handler doesn't distinguish whether the memory is TDX private memory or not but just dump, for instance, below message: [...] mce: [Hardware Error]: CPU 147: Machine Check Exception: f Bank 1: bd80000000100134 [...] mce: [Hardware Error]: RIP 10:<ffffffffadb69870> {__tlb_remove_page_size+0x10/0xa0} ... [...] mce: [Hardware Error]: Run the above through 'mcelog --ascii' [...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel [...] Kernel panic - not syncing: Fatal local machine check Which says "Hardware Error" and "Data load in unrecoverable area of kernel". Ideally, it's better for the log to say "software bug around TDX private memory" instead of "Hardware Error". But in reality the real hardware memory error can happen, and sadly such software-triggered #MC cannot be distinguished from the real hardware error. Also, the error message is used by userspace tool 'mcelog' to parse, so changing the output may break userspace. So keep the "Hardware Error". The "Data load in unrecoverable area of kernel" is also helpful, so keep it too. Instead of modifying above error log, improve the error log by printing additional TDX related message to make the log like: ... [...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel [...] mce: [Hardware Error]: Machine Check: TDX private memory error. Possible kernel bug. Adding this additional message requires determination of whether the memory page is TDX private memory. There is no existing infrastructure to do that. Add an interface to query the TDX module to fill this gap. == Impact == This issue requires some kind of kernel bug to trigger. TDX private memory should never be mapped UC/WC. A partial write originating from these mappings would require *two* bugs, first mapping the wrong page, then writing the wrong memory. It would also be detectable using traditional memory corruption techniques like DEBUG_PAGEALLOC. MOVNTI (and friends) could cause this issue with something like a simple buffer overrun or use-after-free on the direct map. It should also be detectable with normal debug techniques. The one place where this might get nasty would be if the CPU read data then wrote back the same data. That would trigger this problem but would not, for instance, set off mechanisms like slab redzoning because it doesn't actually corrupt data. With an IOMMU at least, the DMA exposure is similar to the UC/WC issue. TDX private memory would first need to be incorrectly mapped into the I/O space and then a later DMA to that mapping would actually cause the poisoning event. [ dhansen: changelog tweaks ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-18-dave.hansen%40intel.com |
||
![]() |
1e536e1068 |
x86/cpu: Detect TDX partial write machine check erratum
TDX memory has integrity and confidentiality protections. Violations of this integrity protection are supposed to only affect TDX operations and are never supposed to affect the host kernel itself. In other words, the host kernel should never, itself, see machine checks induced by the TDX integrity hardware. Alas, the first few generations of TDX hardware have an erratum. A partial write to a TDX private memory cacheline will silently "poison" the line. Subsequent reads will consume the poison and generate a machine check. According to the TDX hardware spec, neither of these things should have happened. Virtually all kernel memory accesses operations happen in full cachelines. In practice, writing a "byte" of memory usually reads a 64 byte cacheline of memory, modifies it, then writes the whole line back. Those operations do not trigger this problem. This problem is triggered by "partial" writes where a write transaction of less than cacheline lands at the memory controller. The CPU does these via non-temporal write instructions (like MOVNTI), or through UC/WC memory mappings. The issue can also be triggered away from the CPU by devices doing partial writes via DMA. With this erratum, there are additional things need to be done. To prepare for those changes, add a CPU bug bit to indicate this erratum. Note this bug reflects the hardware thus it is detected regardless of whether the kernel is built with TDX support or not. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-17-dave.hansen%40intel.com |
||
![]() |
f3f6aa6864 |
x86/virt/tdx: Handle TDX interaction with sleep and hibernation
TDX is incompatible with hibernation and some ACPI sleep states. Users must disable hibernation to use TDX. Users must also disable TDX if they want to use ACPI S3 sleep. This feels a bit wonky and asymmetric, but it avoids adding any new command-line parameters for now. It can be improved if users hate it too much. Long version: TDX cannot survive from S3 and deeper states. The hardware resets and disables TDX completely when platform goes to S3 and deeper. Both TDX guests and the TDX module get destroyed permanently. The kernel uses S3 to support suspend-to-ram, and S4 or deeper states to support hibernation. The kernel also maintains TDX states to track whether it has been initialized and its metadata resource, etc. After resuming from S3 or hibernation, these TDX states won't be correct anymore. Theoretically, the kernel can do more complicated things like resetting TDX internal states and TDX module metadata before going to S3 or deeper, and re-initialize TDX module after resuming, etc, but there is no way to save/restore TDX guests for now. Until TDX supports full save and restore of TDX guests, there is no big value to handle TDX module in suspend and hibernation alone. To make things simple, just choose to make TDX mutually exclusive with S3 and hibernation. Note the TDX module is initialized at runtime. To avoid having to deal with the fuss of determining TDX state at runtime, just choose TDX vs S3 and hibernation at kernel early boot. It's a bad user experience if the choice of TDX and S3/hibernation is done at runtime anyway, i.e., the user can experience being able to do S3/hibernation but later becoming unable to due to TDX being enabled. Disable TDX in kernel early boot when hibernation support is available. Currently there's no mechanism exposed by the hibernation code to allow other kernel code to disable hibernation once for all. Users that want TDX must disable hibernation, like using hibername=no on the command line. Disable ACPI S3 when TDX is enabled by the BIOS. For now the user needs to disable TDX in the BIOS to use ACPI S3. A new kernel command line can be added in the future if there's a need to let user disable TDX host via kernel command line. Alternatively, the kernel could disable TDX when ACPI S3 is supported and request the user to disable S3 to use TDX. But there's no existing kernel command line to do that, and BIOS doesn't always have an option to disable S3. [ dhansen: subject / changelog tweaks ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-16-dave.hansen%40intel.com |
||
![]() |
0b2bc38131 |
x86/virt/tdx: Initialize all TDMRs
After the global KeyID has been configured on all packages, initialize all TDMRs to make all TDX-usable memory regions that are passed to the TDX module become usable. This is the last step of initializing the TDX module. Initializing TDMRs can be time consuming on large memory systems as it involves initializing all metadata entries for all pages that can be used by TDX guests. Initializing different TDMRs can be parallelized. For now to keep it simple, just initialize all TDMRs one by one. It can be enhanced in the future. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-15-dave.hansen%40intel.com |
||
![]() |
e56d28df2f |
x86/virt/tdx: Configure global KeyID on all packages
After the list of TDMRs and the global KeyID are configured to the TDX module, the kernel needs to configure the key of the global KeyID on all packages using TDH.SYS.KEY.CONFIG. This SEAMCALL cannot run parallel on different cpus. Loop all online cpus and use smp_call_on_cpu() to call this SEAMCALL on the first cpu of each package. To keep things simple, this implementation takes no affirmative steps to online cpus to make sure there's at least one cpu for each package. The callers (aka. KVM) can ensure success by ensuring sufficient CPUs are online for this to succeed. Intel hardware doesn't guarantee cache coherency across different KeyIDs. The PAMTs are transitioning from being used by the kernel mapping (KeyId 0) to the TDX module's "global KeyID" mapping. This means that the kernel must flush any dirty KeyID-0 PAMT cachelines before the TDX module uses the global KeyID to access the PAMTs. Otherwise, if those dirty cachelines were written back, they would corrupt the TDX module's metadata. Aside: This corruption would be detected by the memory integrity hardware on the next read of the memory with the global KeyID. The result would likely be fatal to the system but would not impact TDX security. Following the TDX module specification, flush cache before configuring the global KeyID on all packages. Given the PAMT size can be large (~1/256th of system RAM), just use WBINVD on all CPUs to flush. If TDH.SYS.KEY.CONFIG fails, the TDX module may already have "converted" some memory for TDX module use. Convert the memory back so that it can be safely used by the kernel again. Note that this is slower than it should be because of the "partial write machine check" erratum which affects TDX-capable hardware. Also refactor and introduce a new helper: tdmr_do_pamt_func(). This takes a TDMR and runs a function on its PAMT. It looks a _bit_ odd to pass a function pointer around like this, but its use is pretty narrow and it does eliminate what would otherwise be some copying and pasting. [ dhansen: * munge changelog as usual * remove weird (*pamd_func)() syntax ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-14-dave.hansen%40intel.com |
||
![]() |
554ce1c36d |
x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID
The TDX module uses a private KeyID as the "global KeyID" for mapping things like the PAMT and other TDX metadata. This KeyID has already been reserved when detecting TDX during the kernel early boot. Now that the "TD Memory Regions" (TDMRs) are fully built, pass them to the TDX module together with the global KeyID. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-13-dave.hansen%40intel.com |
||
![]() |
dde3b60d57 |
x86/virt/tdx: Designate reserved areas for all TDMRs
As the last step of constructing TDMRs, populate reserved areas for all TDMRs. Cover all memory holes and PAMTs with a TMDR reserved area. [ dhansen: trim down chagnelog ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-12-dave.hansen%40intel.com |
||
![]() |
ac3a220884 |
x86/virt/tdx: Allocate and set up PAMTs for TDMRs
The TDX module uses additional metadata to record things like which guest "owns" a given page of memory. This metadata, referred as Physical Address Metadata Table (PAMT), essentially serves as the 'struct page' for the TDX module. PAMTs are not reserved by hardware up front. They must be allocated by the kernel and then given to the TDX module during module initialization. TDX supports 3 page sizes: 4K, 2M, and 1G. Each "TD Memory Region" (TDMR) has 3 PAMTs to track the 3 supported page sizes. Each PAMT must be a physically contiguous area from a Convertible Memory Region (CMR). However, the PAMTs which track pages in one TDMR do not need to reside within that TDMR but can be anywhere in CMRs. If one PAMT overlaps with any TDMR, the overlapping part must be reported as a reserved area in that particular TDMR. Use alloc_contig_pages() since PAMT must be a physically contiguous area and it may be potentially large (~1/256th of the size of the given TDMR). The downside is alloc_contig_pages() may fail at runtime. One (bad) mitigation is to launch a TDX guest early during system boot to get those PAMTs allocated at early time, but the only way to fix is to add a boot option to allocate or reserve PAMTs during kernel boot. It is imperfect but will be improved on later. TDX only supports a limited number of reserved areas per TDMR to cover both PAMTs and memory holes within the given TDMR. If many PAMTs are allocated within a single TDMR, the reserved areas may not be sufficient to cover all of them. Adopt the following policies when allocating PAMTs for a given TDMR: - Allocate three PAMTs of the TDMR in one contiguous chunk to minimize the total number of reserved areas consumed for PAMTs. - Try to first allocate PAMT from the local node of the TDMR for better NUMA locality. Also dump out how many pages are allocated for PAMTs when the TDX module is initialized successfully. This helps answer the eternal "where did all my memory go?" questions. [ dhansen: merge in error handling cleanup ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-11-dave.hansen%40intel.com |
||
![]() |
f3338ac159 |
x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions
Start to transit out the "multi-steps" to construct a list of "TD Memory Regions" (TDMRs) to cover all TDX-usable memory regions. The kernel configures TDX-usable memory regions by passing a list of TDMRs "TD Memory Regions" (TDMRs) to the TDX module. Each TDMR contains the information of the base/size of a memory region, the base/size of the associated Physical Address Metadata Table (PAMT) and a list of reserved areas in the region. Do the first step to fill out a number of TDMRs to cover all TDX memory regions. To keep it simple, always try to use one TDMR for each memory region. As the first step only set up the base/size for each TDMR. Each TDMR must be 1G aligned and the size must be in 1G granularity. This implies that one TDMR could cover multiple memory regions. If a memory region spans the 1GB boundary and the former part is already covered by the previous TDMR, just use a new TDMR for the remaining part. TDX only supports a limited number of TDMRs. Disable TDX if all TDMRs are consumed but there is more memory region to cover. There are fancier things that could be done like trying to merge adjacent TDMRs. This would allow more pathological memory layouts to be supported. But, current systems are not even close to exhausting the existing TDMR resources in practice. For now, keep it simple. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-10-dave.hansen%40intel.com |
||
![]() |
5173d3c5d0 |
x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions
After the kernel selects all TDX-usable memory regions, the kernel needs to pass those regions to the TDX module via data structure "TD Memory Region" (TDMR). Add a placeholder to construct a list of TDMRs (in multiple steps) to cover all TDX-usable memory regions. === Long Version === TDX provides increased levels of memory confidentiality and integrity. This requires special hardware support for features like memory encryption and storage of memory integrity checksums. Not all memory satisfies these requirements. As a result, TDX introduced the concept of a "Convertible Memory Region" (CMR). During boot, the firmware builds a list of all of the memory ranges which can provide the TDX security guarantees. The list of these ranges is available to the kernel by querying the TDX module. The TDX architecture needs additional metadata to record things like which TD guest "owns" a given page of memory. This metadata essentially serves as the 'struct page' for the TDX module. The space for this metadata is not reserved by the hardware up front and must be allocated by the kernel and given to the TDX module. Since this metadata consumes space, the VMM can choose whether or not to allocate it for a given area of convertible memory. If it chooses not to, the memory cannot receive TDX protections and can not be used by TDX guests as private memory. For every memory region that the VMM wants to use as TDX memory, it sets up a "TD Memory Region" (TDMR). Each TDMR represents a physically contiguous convertible range and must also have its own physically contiguous metadata table, referred to as a Physical Address Metadata Table (PAMT), to track status for each page in the TDMR range. Unlike a CMR, each TDMR requires 1G granularity and alignment. To support physical RAM areas that don't meet those strict requirements, each TDMR permits a number of internal "reserved areas" which can be placed over memory holes. If PAMT metadata is placed within a TDMR it must be covered by one of these reserved areas. Let's summarize the concepts: CMR - Firmware-enumerated physical ranges that support TDX. CMRs are 4K aligned. TDMR - Physical address range which is chosen by the kernel to support TDX. 1G granularity and alignment required. Each TDMR has reserved areas where TDX memory holes and overlapping PAMTs can be represented. PAMT - Physically contiguous TDX metadata. One table for each page size per TDMR. Roughly 1/256th of TDMR in size. 256G TDMR = ~1G PAMT. As one step of initializing the TDX module, the kernel configures TDX-usable memory regions by passing a list of TDMRs to the TDX module. Constructing the list of TDMRs consists below steps: 1) Fill out TDMRs to cover all memory regions that the TDX module will use for TD memory. 2) Allocate and set up PAMT for each TDMR. 3) Designate reserved areas for each TDMR. Add a placeholder to construct TDMRs to do the above steps. To keep things simple, just allocate enough space to hold maximum number of TDMRs up front. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-9-dave.hansen%40intel.com |
||
![]() |
cf72bc4816 |
x86/virt/tdx: Get module global metadata for module initialization
The TDX module global metadata provides system-wide information about the module. TL;DR: Use the TDH.SYS.RD SEAMCALL to tell if the module is good or not. Long Version: 1) Only initialize TDX module with version 1.5 and later TDX module 1.0 has some compatibility issues with the later versions of module, as documented in the "Intel TDX module ABI incompatibilities between TDX1.0 and TDX1.5" spec. Don't bother with module versions that do not have a stable ABI. 2) Get the essential global metadata for module initialization TDX reports a list of "Convertible Memory Region" (CMR) to tell the kernel which memory is TDX compatible. The kernel needs to build a list of memory regions (out of CMRs) as "TDX-usable" memory and pass them to the TDX module. The kernel does this by constructing a list of "TD Memory Regions" (TDMRs) to cover all these memory regions and passing them to the TDX module. Each TDMR is a TDX architectural data structure containing the memory region that the TDMR covers, plus the information to track (within this TDMR): a) the "Physical Address Metadata Table" (PAMT) to track each TDX memory page's status (such as which TDX guest "owns" a given page, and b) the "reserved areas" to tell memory holes that cannot be used as TDX memory. The kernel needs to get below metadata from the TDX module to build the list of TDMRs: a) the maximum number of supported TDMRs b) the maximum number of supported reserved areas per TDMR and, c) the PAMT entry size for each TDX-supported page size. == Implementation == The TDX module has two modes of fetching the metadata: a one field at a time, or all in one blob. Use the field at a time for now. It is slower, but there just are not enough fields now to justify the complexity of extra unpacking. The err_free_tdxmem=>out_put_tdxmem goto looks wonky by itself. But it is the first of a bunch of error handling that will get stuck at its site. [ dhansen: clean up changelog and add a struct to map between the TDX module fields and 'struct tdx_tdmr_sysinfo' ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-8-dave.hansen%40intel.com |
||
![]() |
abe8dbab8f |
x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory
Start to transit out the "multi-steps" to initialize the TDX module. TDX provides increased levels of memory confidentiality and integrity. This requires special hardware support for features like memory encryption and storage of memory integrity checksums. Not all memory satisfies these requirements. As a result, TDX introduced the concept of a "Convertible Memory Region" (CMR). During boot, the firmware builds a list of all of the memory ranges which can provide the TDX security guarantees. The list of these ranges is available to the kernel by querying the TDX module. CMRs tell the kernel which memory is TDX compatible. The kernel needs to build a list of memory regions (out of CMRs) as "TDX-usable" memory and pass them to the TDX module. Once this is done, those "TDX-usable" memory regions are fixed during module's lifetime. To keep things simple, assume that all TDX-protected memory will come from the page allocator. Make sure all pages in the page allocator *are* TDX-usable memory. As TDX-usable memory is a fixed configuration, take a snapshot of the memory configuration from memblocks at the time of module initialization (memblocks are modified on memory hotplug). This snapshot is used to enable TDX support for *this* memory configuration only. Use a memory hotplug notifier to ensure that no other RAM can be added outside of this configuration. This approach requires all memblock memory regions at the time of module initialization to be TDX convertible memory to work, otherwise module initialization will fail in a later SEAMCALL when passing those regions to the module. This approach works when all boot-time "system RAM" is TDX convertible memory and no non-TDX-convertible memory is hot-added to the core-mm before module initialization. For instance, on the first generation of TDX machines, both CXL memory and NVDIMM are not TDX convertible memory. Using kmem driver to hot-add any CXL memory or NVDIMM to the core-mm before module initialization will result in failure to initialize the module. The SEAMCALL error code will be available in the dmesg to help user to understand the failure. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-7-dave.hansen%40intel.com |
||
![]() |
6162b310bc |
x86/virt/tdx: Add skeleton to enable TDX on demand
There are essentially two steps to get the TDX module ready: 1) Get each CPU ready to run TDX 2) Set up the shared TDX module data structures Introduce and export (to KVM) the infrastructure to do both of these pieces at runtime. == Per-CPU TDX Initialization == Track the initialization status of each CPU with a per-cpu variable. This avoids failures in the case of KVM module reloads and handles cases where CPUs come online later. Generally, the per-cpu SEAMCALLs happen first. But there's actually one global call that has to happen before _any_ others (TDH_SYS_INIT). It's analogous to the boot CPU having to do a bit of extra work just because it happens to be the first one. Track if _any_ CPU has done this call and then only actually do it during the first per-cpu init. == Shared TDX Initialization == Create the global state function (tdx_enable()) as a simple placeholder. The TODO list will be pared down as functionality is added. Use a state machine protected by mutex to make sure the work in tdx_enable() will only be done once. This avoids failures if the KVM module is reloaded. A CPU must be made ready to run TDX before it can participate in initializing the shared parts of the module. Any caller of tdx_enable() need to ensure that it can never run on a CPU which is not ready to run TDX. It needs to be wary of CPU hotplug, preemption and the VMX enabling state of any CPU on which it might run. == Why runtime instead of boot time? == The TDX module can be initialized only once in its lifetime. Instead of always initializing it at boot time, this implementation chooses an "on demand" approach to initialize TDX until there is a real need (e.g when requested by KVM). This approach has below pros: 1) It avoids consuming the memory that must be allocated by kernel and given to the TDX module as metadata (~1/256th of the TDX-usable memory), and also saves the CPU cycles of initializing the TDX module (and the metadata) when TDX is not used at all. 2) The TDX module design allows it to be updated while the system is running. The update procedure shares quite a few steps with this "on demand" initialization mechanism. The hope is that much of "on demand" mechanism can be shared with a future "update" mechanism. A boot-time TDX module implementation would not be able to share much code with the update mechanism. 3) Making SEAMCALL requires VMX to be enabled. Currently, only the KVM code mucks with VMX enabling. If the TDX module were to be initialized separately from KVM (like at boot), the boot code would need to be taught how to muck with VMX enabling and KVM would need to be taught how to cope with that. Making KVM itself responsible for TDX initialization lets the rest of the kernel stay blissfully unaware of VMX. [ dhansen: completely reorder/rewrite changelog ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-6-dave.hansen%40intel.com |
||
![]() |
df01f5ae07 |
x86/virt/tdx: Add SEAMCALL error printing for module initialization
The SEAMCALLs involved during the TDX module initialization are not expected to fail. In fact, they are not expected to return any non-zero code (except the "running out of entropy error", which can be handled internally already). Add yet another set of SEAMCALL wrappers, which treats all non-zero return code as error, to support printing SEAMCALL error upon failure for module initialization. Note the TDX module initialization doesn't use the _saved_ret() variant thus no wrapper is added for it. SEAMCALL assembly can also return kernel-defined error codes for three special cases: 1) TDX isn't enabled by the BIOS; 2) TDX module isn't loaded; 3) CPU isn't in VMX operation. Whether they can legally happen depends on the caller, so leave to the caller to print error message when desired. Also convert the SEAMCALL error codes to the kernel error codes in the new wrappers so that each SEAMCALL caller doesn't have to repeat the conversion. [ dhansen: Align the register dump with show_regs(). Zero-pad the contents, split on two lines and use consistent spacing. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-5-dave.hansen%40intel.com |
||
![]() |
765a0542fd |
x86/virt/tdx: Detect TDX during kernel boot
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious host and certain physical attacks. A CPU-attested software module called 'the TDX module' runs inside a new isolated memory range as a trusted hypervisor to manage and run protected VMs. Pre-TDX Intel hardware has support for a memory encryption architecture called MKTME. The memory encryption hardware underpinning MKTME is also used for Intel TDX. TDX ends up "stealing" some of the physical address space from the MKTME architecture for crypto-protection to VMs. The BIOS is responsible for partitioning the "KeyID" space between legacy MKTME and TDX. The KeyIDs reserved for TDX are called 'TDX private KeyIDs' or 'TDX KeyIDs' for short. During machine boot, TDX microcode verifies that the BIOS programmed TDX private KeyIDs consistently and correctly programmed across all CPU packages. The MSRs are locked in this state after verification. This is why MSR_IA32_MKTME_KEYID_PARTITIONING gets used for TDX enumeration: it indicates not just that the hardware supports TDX, but that all the boot-time security checks passed. The TDX module is expected to be loaded by the BIOS when it enables TDX, but the kernel needs to properly initialize it before it can be used to create and run any TDX guests. The TDX module will be initialized by the KVM subsystem when KVM wants to use TDX. Detect platform TDX support by detecting TDX private KeyIDs. The TDX module itself requires one TDX KeyID as the 'TDX global KeyID' to protect its metadata. Each TDX guest also needs a TDX KeyID for its own protection. Just use the first TDX KeyID as the global KeyID and leave the rest for TDX guests. If no TDX KeyID is left for TDX guests, disable TDX as initializing the TDX module alone is useless. [ dhansen: add X86_FEATURE, replace helper function ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-1-dave.hansen%40intel.com |
||
![]() |
7b804135d4 |
x86/virt/tdx: Make TDX_MODULE_CALL handle SEAMCALL #UD and #GP
SEAMCALL instruction causes #UD if the CPU isn't in VMX operation. Currently the TDX_MODULE_CALL assembly doesn't handle #UD, thus making SEAMCALL when VMX is disabled would cause Oops. Unfortunately, there are legal cases that SEAMCALL can be made when VMX is disabled. For instance, VMX can be disabled due to emergency reboot while there are still TDX guests running. Extend the TDX_MODULE_CALL assembly to return an error code for #UD to handle this case gracefully, e.g., KVM can then quietly eat all SEAMCALL errors caused by emergency reboot. SEAMCALL instruction also causes #GP when TDX isn't enabled by the BIOS. Use _ASM_EXTABLE_FAULT() to catch both exceptions with the trap number recorded, and define two new error codes by XORing the trap number to the TDX_SW_ERROR. This opportunistically handles #GP too while using the same simple assembly code. A bonus is when kernel mistakenly calls SEAMCALL when CPU isn't in VMX operation, or when TDX isn't enabled by the BIOS, or when the BIOS is buggy, the kernel can get a nicer error code rather than a less understandable Oops. This is basically based on Peter's code. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/de975832a367f476aab2d0eb0d9de66019a16b54.1692096753.git.kai.huang%40intel.com |
||
![]() |
c33621b4c5 |
x86/virt/tdx: Wire up basic SEAMCALL functions
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious host and certain physical attacks. A CPU-attested software module called 'the TDX module' runs inside a new isolated memory range as a trusted hypervisor to manage and run protected VMs. TDX introduces a new CPU mode: Secure Arbitration Mode (SEAM). This mode runs only the TDX module itself or other code to load the TDX module. The host kernel communicates with SEAM software via a new SEAMCALL instruction. This is conceptually similar to a guest->host hypercall, except it is made from the host to SEAM software instead. The TDX module establishes a new SEAMCALL ABI which allows the host to initialize the module and to manage VMs. The SEAMCALL ABI is very similar to the TDCALL ABI and leverages much TDCALL infrastructure. Wire up basic functions to make SEAMCALLs for the basic support of running TDX guests: __seamcall(), __seamcall_ret(), and __seamcall_saved_ret() for TDH.VP.ENTER. All SEAMCALLs involved in the basic TDX support don't use "callee-saved" registers as input and output, except the TDH.VP.ENTER. To start to support TDX, create a new arch/x86/virt/vmx/tdx/tdx.c for TDX host kernel support. Add a new Kconfig option CONFIG_INTEL_TDX_HOST to opt-in TDX host kernel support (to distinguish with TDX guest kernel support). So far only KVM uses TDX. Make the new config option depend on KVM_INTEL. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Isaku Yamahata <isaku.yamahata@intel.com> Link: https://lore.kernel.org/all/4db7c3fc085e6af12acc2932294254ddb3d320b3.1692096753.git.kai.huang%40intel.com |
||
![]() |
90f5ecd37f |
x86/tdx: Reimplement __tdx_hypercall() using TDX_MODULE_CALL asm
Now the TDX_HYPERCALL asm is basically identical to the TDX_MODULE_CALL with both '\saved' and '\ret' enabled, with two minor things though: 1) The way to restore the structure pointer is different The TDX_HYPERCALL uses RCX as spare to restore the structure pointer, but the TDX_MODULE_CALL assumes no spare register can be used. In other words, TDX_MODULE_CALL already covers what TDX_HYPERCALL does. 2) TDX_MODULE_CALL only clears shared registers for TDH.VP.ENTER For this just need to make that code available for the non-host case. Thus, remove the TDX_HYPERCALL and reimplement the __tdx_hypercall() using the TDX_MODULE_CALL. Extend the TDX_MODULE_CALL to cover "clear shared registers" for TDG.VP.VMCALL. Introduce a new __tdcall_saved_ret() to replace the temporary __tdcall_hypercall(). The __tdcall_saved_ret() can also be used for those new TDCALLs which require more input/output registers than the basic TDCALLs do. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/e68a2473fb6f5bcd78b078cae7510e9d0753b3df.1692096753.git.kai.huang%40intel.com |