Provide static calls to control preempt_schedule[_notrace]()
(called in CONFIG_PREEMPT) so that we can override their behaviour when
preempt= is overriden.
Since the default behaviour is full preemption, both their calls are
initialized to the arch provided wrapper, if any.
[fweisbec: only define static calls when PREEMPT_DYNAMIC, make it less
dependent on x86 with __preempt_schedule_func]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-7-frederic@kernel.org
Provide static calls to control cond_resched() (called in !CONFIG_PREEMPT)
and might_resched() (called in CONFIG_PREEMPT_VOLUNTARY) to that we
can override their behaviour when preempt= is overriden.
Since the default behaviour is full preemption, both their calls are
ignored when preempt= isn't passed.
[fweisbec: branch might_resched() directly to __cond_resched(), only
define static calls when PREEMPT_DYNAMIC]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210118141223.123667-6-frederic@kernel.org
The description of the RT offset and the values for 'normal' tasks needs
update. Moreover there are DL tasks now.
task_prio() has to stay like it is to guarantee compatibility with the
/proc/<pid>/stat priority field:
# cat /proc/<pid>/stat | awk '{ print $18; }'
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210128131040.296856-4-dietmar.eggemann@arm.com
Commit d46523ea32 ("[PATCH] fix MAX_USER_RT_PRIO and MAX_RT_PRIO")
was introduced due to a a small time period in which the realtime patch
set was using different values for MAX_USER_RT_PRIO and MAX_RT_PRIO.
This is no longer true, i.e. now MAX_RT_PRIO == MAX_USER_RT_PRIO.
Get rid of MAX_USER_RT_PRIO and make everything use MAX_RT_PRIO
instead.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210128131040.296856-2-dietmar.eggemann@arm.com
Pull RCU updates from Paul E. McKenney:
- Documentation updates.
- Miscellaneous fixes.
- kfree_rcu() updates: Addition of mem_dump_obj() to provide allocator return
addresses to more easily locate bugs. This has a couple of RCU-related commits,
but is mostly MM. Was pulled in with akpm's agreement.
- Per-callback-batch tracking of numbers of callbacks,
which enables better debugging information and smarter
reactions to large numbers of callbacks.
- The first round of changes to allow CPUs to be runtime switched from and to
callback-offloaded state.
- CONFIG_PREEMPT_RT-related changes.
- RCU CPU stall warning updates.
- Addition of polling grace-period APIs for SRCU.
- Torture-test and torture-test scripting updates, including a "torture everything"
script that runs rcutorture, locktorture, scftorture, rcuscale, and refscale.
Plus does an allmodconfig build.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Safely rescheduling while holding a spin lock is essential for keeping
long running kernel operations running smoothly. Add the facility to
cond_resched rwlocks.
CC: Ingo Molnar <mingo@redhat.com>
CC: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Waiman Long <longman@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that we have KTHREAD_IS_PER_CPU to denote the critical per-cpu
tasks to retain during CPU offline, we can relax the warning in
set_cpus_allowed_ptr(). Any spurious kthread that wants to get on at
the last minute will get pushed off before it can run.
While during CPU online there is no harm, and actual benefit, to
allowing kthreads back on early, it simplifies hotplug code and fixes
a number of outstanding races.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Lai jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103507.240724591@infradead.org
Prior to commit 1cf12e08bc ("sched/hotplug: Consolidate task
migration on CPU unplug") we'd leave any task on the dying CPU and
break affinity and force them off at the very end.
This scheme had to change in order to enable migrate_disable(). One
cannot wait for migrate_disable() to complete while stuck in
stop_machine(). Furthermore, since we need at the very least: idle,
hotplug and stop threads at any point before stop_machine, we can't
break affinity and/or push those away.
Under the assumption that all per-cpu kthreads are sanely handled by
CPU hotplug, the new code no long breaks affinity or migrates any of
them (which then includes the critical ones above).
However, there's an important difference between per-cpu kthreads and
kthreads that happen to have a single CPU affinity which is lost. The
latter class very much relies on the forced affinity breaking and
migration semantics previously provided.
Use the new kthread_is_per_cpu() infrastructure to tighten
is_per_cpu_kthread() and fix the hot-unplug problems stemming from the
change.
Fixes: 1cf12e08bc ("sched/hotplug: Consolidate task migration on CPU unplug")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103507.102416009@infradead.org
In preparation of using the balance_push state in ttwu() we need it to
provide a reliable and consistent state.
The immediate problem is that rq->balance_callback gets cleared every
schedule() and then re-set in the balance_push_callback() itself. This
is not a reliable signal, so add a variable that stays set during the
entire time.
Also move setting it before the synchronize_rcu() in
sched_cpu_deactivate(), such that we get guaranteed visibility to
ttwu(), which is a preempt-disable region.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.966069627@infradead.org
We don't need to push away tasks when we come online, mark the push
complete right before the CPU dies.
XXX hotplug state machine has trouble with rollback here.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.415606087@infradead.org
Since commit
1cf12e08bc ("sched/hotplug: Consolidate task migration on CPU unplug")
tasks are expected to move themselves out of a out-going CPU. For most
tasks this will be done automagically via BALANCE_PUSH, but percpu kthreads
will have to cooperate and move themselves away one way or another.
Currently, some percpu kthreads (workqueues being a notable exemple) do not
cooperate nicely and can end up on an out-going CPU at the time
sched_cpu_dying() is invoked.
Print the dying rq's tasks to shed some light on the stragglers.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210113183141.11974-1-valentin.schneider@arm.com
SCHED_SOFTIRQ is raised to trigger periodic load balancing. When CPU is not
active, CPU should not participate in load balancing.
The scheduler uses nohz.idle_cpus_mask to keep track of the CPUs which can
do idle load balancing. When bringing a CPU up the CPU is added to the mask
when it reaches the active state, but on teardown the CPU stays in the mask
until it goes offline and invokes sched_cpu_dying().
When SCHED_SOFTIRQ is raised on a !active CPU, there might be a pending
softirq when stopping the tick which triggers a warning in NOHZ code. The
SCHED_SOFTIRQ can also be raised by the scheduler tick which has the same
issue.
Therefore remove the CPU from nohz.idle_cpus_mask when it is marked
inactive and also prevent the scheduler_tick() from raising SCHED_SOFTIRQ
after this point.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20201215104400.9435-1-anna-maria@linutronix.de
There is nothing schedutil specific in schedutil_cpu_util(), rename it
to effective_cpu_util(). Also create and expose another wrapper
sched_cpu_util() which can be used by other parts of the kernel, like
thermal core (that will be done in a later commit).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
The kernel test robot measured a -1.6% performance regression on
will-it-scale/sched_yield due to commit:
2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Even though we were careful to replace a single load with another
single load from the same cacheline.
Restore finish_lock_switch() to the exact state before the offending
patch and solve the problem differently.
Fixes: 2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201210161408.GX3021@hirez.programming.kicks-ass.net
- Consolidate all kmap_atomic() internals into a generic implementation
which builds the base for the kmap_local() API and make the
kmap_atomic() interface wrappers which handle the disabling/enabling of
preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a mapping
is established. It has to disable migration instead to guarantee that
the virtual address of the mapped slot is the same accross preemption.
- Provide better debug facilities: guard pages and enforced utilization
of the mapping mechanics on 64bit systems when the architecture allows
it.
- Provide the new kmap_local() API which can now be used to cleanup the
kmap_atomic() usage sites all over the place. Most of the usage sites
do not require the implicit disabling of preemption and pagefaults so
the penalty on 64bit and 32bit non-highmem systems is removed and quite
some of the code can be simplified. A wholesale conversion is not
possible because some usage depends on the implicit side effects and
some need to be cleaned up because they work around these side effects.
The migrate disable side effect is only effective on highmem systems
and when enforced debugging is enabled. On 64bit and 32bit non-highmem
systems the overhead is completely avoided.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XyQwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUolD/9+R+BX96fGir+I8rG9dc3cbLw5meSi
0I/Nq3PToZMs2Iqv50DsoaPYHHz/M6fcAO9LRIgsE9jRbnY93GnsBM0wU9Y8yQaT
4wUzOG5WHaLDfqIkx/CN9coUl458oEiwOEbn79A2FmPXFzr7IpkufnV3ybGDwzwP
p73bjMJMPPFrsa9ig87YiYfV/5IAZHi82PN8Cq1v4yNzgXRP3Tg6QoAuCO84ZnWF
RYlrfKjcJ2xPdn+RuYyXolPtxr1hJQ0bOUpe4xu/UfeZjxZ7i1wtwLN9kWZe8CKH
+x4Lz8HZZ5QMTQ9sCHOLtKzu2MceMcpISzoQH4/aFQCNMgLn1zLbS790XkYiQCuR
ne9Cua+IqgYfGMG8cq8+bkU9HCNKaXqIBgPEKE/iHYVmqzCOqhW5Cogu4KFekf6V
Wi7pyyUdX2en8BAWpk5NHc8de9cGcc+HXMq2NIcgXjVWvPaqRP6DeITERTZLJOmz
XPxq5oPLGl7wdm7z+ICIaNApy8zuxpzb6sPLNcn7l5OeorViORlUu08AN8587wAj
FiVjp6ZYomg+gyMkiNkDqFOGDH5TMENpOFoB0hNNEyJwwS0xh6CgWuwZcv+N8aPO
HuS/P+tNANbD8ggT4UparXYce7YCtgOf3IG4GA3JJYvYmJ6pU+AZOWRoDScWq4o+
+jlfoJhMbtx5Gg==
=n71I
-----END PGP SIGNATURE-----
Merge tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull kmap updates from Thomas Gleixner:
"The new preemtible kmap_local() implementation:
- Consolidate all kmap_atomic() internals into a generic
implementation which builds the base for the kmap_local() API and
make the kmap_atomic() interface wrappers which handle the
disabling/enabling of preemption and pagefaults.
- Switch the storage from per-CPU to per task and provide scheduler
support for clearing mapping when scheduling out and restoring them
when scheduling back in.
- Merge the migrate_disable/enable() code, which is also part of the
scheduler pull request. This was required to make the kmap_local()
interface available which does not disable preemption when a
mapping is established. It has to disable migration instead to
guarantee that the virtual address of the mapped slot is the same
across preemption.
- Provide better debug facilities: guard pages and enforced
utilization of the mapping mechanics on 64bit systems when the
architecture allows it.
- Provide the new kmap_local() API which can now be used to cleanup
the kmap_atomic() usage sites all over the place. Most of the usage
sites do not require the implicit disabling of preemption and
pagefaults so the penalty on 64bit and 32bit non-highmem systems is
removed and quite some of the code can be simplified. A wholesale
conversion is not possible because some usage depends on the
implicit side effects and some need to be cleaned up because they
work around these side effects.
The migrate disable side effect is only effective on highmem
systems and when enforced debugging is enabled. On 64bit and 32bit
non-highmem systems the overhead is completely avoided"
* tag 'core-mm-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
ARM: highmem: Fix cache_is_vivt() reference
x86/crashdump/32: Simplify copy_oldmem_page()
io-mapping: Provide iomap_local variant
mm/highmem: Provide kmap_local*
sched: highmem: Store local kmaps in task struct
x86: Support kmap_local() forced debugging
mm/highmem: Provide CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
mm/highmem: Provide and use CONFIG_DEBUG_KMAP_LOCAL
microblaze/mm/highmem: Add dropped #ifdef back
xtensa/mm/highmem: Make generic kmap_atomic() work correctly
mm/highmem: Take kmap_high_get() properly into account
highmem: High implementation details and document API
Documentation/io-mapping: Remove outdated blurb
io-mapping: Cleanup atomic iomap
mm/highmem: Remove the old kmap_atomic cruft
highmem: Get rid of kmap_types.h
xtensa/mm/highmem: Switch to generic kmap atomic
sparc/mm/highmem: Switch to generic kmap atomic
powerpc/mm/highmem: Switch to generic kmap atomic
nds32/mm/highmem: Switch to generic kmap atomic
...
- migrate_disable/enable() support which originates from the RT tree and
is now a prerequisite for the new preemptible kmap_local() API which aims
to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XwK4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoX28D/9cVrvziSQGfBfuQWnUiw8iOIq1QBa2
Me+Tvenhfrlt7xU6rbP9ciFu7eTN+fS06m5uQPGI+t22WuJmHzbmw1bJVXfkvYfI
/QoU+Hg7DkDAn1p7ZKXh0dRkV0nI9ixxSHl0E+Zf1ATBxCUMV2SO85flg6z/4qJq
3VWUye0dmR7/bhtkIjv5rwce9v2JB2g1AbgYXYTW9lHVoUdGoMSdiZAF4tGyHLnx
sJ6DMqQ+k+dmPyYO0z5MTzjW/fXit4n9w2e3z9TvRH/uBu58WSW1RBmQYX6aHBAg
dhT9F4lvTs6lJY23x5RSFWDOv6xAvKF5a0xfb8UZcyH5EoLYrPRvm42a0BbjdeRa
u0z7LbwIlKA+RFdZzFZWz8UvvO0ljyMjmiuqZnZ5dY9Cd80LSBuxrWeQYG0qg6lR
Y2povhhCepEG+q8AXIe2YjHKWKKC1s/l/VY3CNnCzcd21JPQjQ4Z5eWGmHif5IED
CntaeFFhZadR3w02tkX35zFmY3w4soKKrbI4EKWrQwd+cIEQlOSY7dEPI/b5BbYj
MWAb3P4EG9N77AWTNmbhK4nN0brEYb+rBbCA+5dtNBVhHTxAC7OTWElJOC2O66FI
e06dREjvwYtOkRUkUguWwErbIai2gJ2MH0VILV3hHoh64oRk7jjM8PZYnjQkdptQ
Gsq0rJW5iiu/OQ==
=Oz1V
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
- migrate_disable/enable() support which originates from the RT tree
and is now a prerequisite for the new preemptible kmap_local() API
which aims to replace kmap_atomic().
- A fair amount of topology and NUMA related improvements
- Improvements for the frequency invariant calculations
- Enhanced robustness for the global CPU priority tracking and decision
making
- The usual small fixes and enhancements all over the place
* tag 'sched-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
sched/fair: Trivial correction of the newidle_balance() comment
sched/fair: Clear SMT siblings after determining the core is not idle
sched: Fix kernel-doc markup
x86: Print ratio freq_max/freq_base used in frequency invariance calculations
x86, sched: Use midpoint of max_boost and max_P for frequency invariance on AMD EPYC
x86, sched: Calculate frequency invariance for AMD systems
irq_work: Optimize irq_work_single()
smp: Cleanup smp_call_function*()
irq_work: Cleanup
sched: Limit the amount of NUMA imbalance that can exist at fork time
sched/numa: Allow a floating imbalance between NUMA nodes
sched: Avoid unnecessary calculation of load imbalance at clone time
sched/numa: Rename nr_running and break out the magic number
sched: Make migrate_disable/enable() independent of RT
sched/topology: Condition EAS enablement on FIE support
arm64: Rebuild sched domains on invariance status changes
sched/topology,schedutil: Wrap sched domains rebuild
sched/uclamp: Allow to reset a task uclamp constraint value
sched/core: Fix typos in comments
Documentation: scheduler: fix information on arch SD flags, sched_domain and sched_debug
...
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for non-x86
specific TIF flags which are solely relevant for syscall related work
and have been moved into their own storage space. The x86 specific part
had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is going to
come seperate via Jens.
- The selective syscall redirection facility which provides a clean and
efficient way to support the non-Linux syscalls of WINE by catching them
at syscall entry and redirecting them to the user space emulation. This
can be utilized for other purposes as well and has been designed
carefully to avoid overhead for the regular fastpath. This includes the
core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the users
of the generic entry code which guarantee the proper ordering and
protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall restart
mechanism.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XoPoTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoe0tD/4jSKHIogVM9kVpiYfwjDGS1NluaBXn
71ZoASbX9GZebyGandMyF2QP1iJ24ZO0RztBwHEVH6fyomKB2iFNedssCpO9yfWV
3eFRpOvMpbszY2W2bd0QG3GrqaTttjVfB4ahkGLzqeSbchdob6hZpNDYtBZnujA6
GSnrrurfJkCGoQny+yJQYdQJXQU+BIX90B2a2Q+jW123Luy/iHXC1f/krZSA1m14
fC9xYLSUjPphTzh2ZOW+C3DgdjOL5PfAm/6F+DArt4GtLgrEGD7R74aLSFhvetky
dn5QtG+yAsz1i0cc5Wu/JBcT9tOkY92rPYSyLI9bYQUSQ/bMyuprz6oYKj3dubsu
ZSsKPdkNFPIniL4fLdCMWZcIXX5xgnrxKjdgXZXW3gtrcxSns8w8uED3Sh7dgE08
pgIeq67E5g/OB8kJXH1VxdewmeQb9cOmnzzHwNO7TrrGbBKjDTYHNdYOKf1dUTTK
ZX1UjLfGwxTkMYAbQD1k0JGZ2OLRshzSaH5BW/ZKa3bvJW6yYOq+/YT8B8hbJ8U3
vThlO75/55IJxS5r5Y3vZd/IHdsYbPuETD+TA8tNYtPqNZasW8nnk4TYctWqzDuO
/Ka1wvWYid3c6ySznQn4zSyRjr968AfHeZ9YTUMhWufy5waXVmdBMG41u3IKfsVt
osyzNc4EK19/Mg==
=hsjV
-----END PGP SIGNATURE-----
Merge tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core entry/exit updates from Thomas Gleixner:
"A set of updates for entry/exit handling:
- More generalization of entry/exit functionality
- The consolidation work to reclaim TIF flags on x86 and also for
non-x86 specific TIF flags which are solely relevant for syscall
related work and have been moved into their own storage space. The
x86 specific part had to be merged in to avoid a major conflict.
- The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
delivery mode of task work and results in an impressive performance
improvement for io_uring. The non-x86 consolidation of this is
going to come seperate via Jens.
- The selective syscall redirection facility which provides a clean
and efficient way to support the non-Linux syscalls of WINE by
catching them at syscall entry and redirecting them to the user
space emulation. This can be utilized for other purposes as well
and has been designed carefully to avoid overhead for the regular
fastpath. This includes the core changes and the x86 support code.
- Simplification of the context tracking entry/exit handling for the
users of the generic entry code which guarantee the proper ordering
and protection.
- Preparatory changes to make the generic entry code accomodate S390
specific requirements which are mostly related to their syscall
restart mechanism"
* tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
entry: Add syscall_exit_to_user_mode_work()
entry: Add exit_to_user_mode() wrapper
entry_Add_enter_from_user_mode_wrapper
entry: Rename exit_to_user_mode()
entry: Rename enter_from_user_mode()
docs: Document Syscall User Dispatch
selftests: Add benchmark for syscall user dispatch
selftests: Add kselftest for syscall user dispatch
entry: Support Syscall User Dispatch on common syscall entry
kernel: Implement selective syscall userspace redirection
signal: Expose SYS_USER_DISPATCH si_code type
x86: vdso: Expose sigreturn address on vdso to the kernel
MAINTAINERS: Add entry for common entry code
entry: Fix boot for !CONFIG_GENERIC_ENTRY
x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs
sched: Detect call to schedule from critical entry code
context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK
context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK
x86: Reclaim unused x86 TI flags
...
Kernel-doc requires that a kernel-doc markup to be immediately
below the function prototype, as otherwise it will rename it.
So, move sys_sched_yield() markup to the right place.
Also fix the cpu_util() markup: Kernel-doc markups
should use this format:
identifier - description
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/50cd6f460aeb872ebe518a8e9cfffda2df8bdb0a.1606823973.git.mchehab+huawei@kernel.org
Get rid of the __call_single_node union and cleanup the API a little
to avoid external code relying on the structure layout as much.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Instead of storing the map per CPU provide and use per task storage. That
prepares for local kmaps which are preemptible.
The context switch code is preparatory and not yet in use because
kmap_atomic() runs with preemption disabled. Will be made usable in the
next step.
The context switch logic is safe even when an interrupt happens after
clearing or before restoring the kmaps. The kmap index in task struct is
not modified so any nesting kmap in an interrupt will use unused indices
and on return the counter is the same as before.
Also add an assert into the return to user space code. Going back to user
space with an active kmap local is a nono.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.372935758@linutronix.de
Now that the scheduler can deal with migrate disable properly, there is no
real compelling reason to make it only available for RT.
There are quite some code pathes which needlessly disable preemption in
order to prevent migration and some constructs like kmap_atomic() enforce
it implicitly.
Making it available independent of RT allows to provide a preemptible
variant of kmap_atomic() and makes the code more consistent in general.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Grudgingly-Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.269943012@linutronix.de
In case the user wants to stop controlling a uclamp constraint value
for a task, use the magic value -1 in sched_util_{min,max} with the
appropriate sched_flags (SCHED_FLAG_UTIL_CLAMP_{MIN,MAX}) to indicate
the reset.
The advantage over the 'additional flag' approach (i.e. introducing
SCHED_FLAG_UTIL_CLAMP_RESET) is that no additional flag has to be
exported via uapi. This avoids the need to document how this new flag
has be used in conjunction with the existing uclamp related flags.
The following subtle issue is fixed as well. When a uclamp constraint
value is set on a !user_defined uclamp_se it is currently first reset
and then set.
Fix this by AND'ing !user_defined with !SCHED_FLAG_UTIL_CLAMP which
stands for the 'sched class change' case.
The related condition 'if (uc_se->user_defined)' moved from
__setscheduler_uclamp() into uclamp_reset().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yun Hsiang <hsiang023167@gmail.com>
Link: https://lkml.kernel.org/r/20201113113454.25868-1-dietmar.eggemann@arm.com
Oleksandr reported hitting the WARN in the 'task_rq(p) != rq' branch
of migration_cpu_stop(). Valentin noted that using cpu_of(rq) in that
case is just plain wrong to begin with, since per the earlier branch
that isn't the actual CPU of the task.
Replace both instances of is_cpu_allowed() by a direct p->cpus_mask
test using task_cpu().
Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Debugged-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Qian reported that some fuzzer issuing sched_setaffinity() ends up stuck on
a wait_for_completion(). The problematic pattern seems to be:
affine_move_task()
// task_running() case
stop_one_cpu();
wait_for_completion(&pending->done);
Combined with, on the stopper side:
migration_cpu_stop()
// Task moved between unlocks and scheduling the stopper
task_rq(p) != rq &&
// task_running() case
dest_cpu >= 0
=> no complete_all()
This can happen with both PREEMPT and !PREEMPT, although !PREEMPT should
be more likely to see this given the targeted task has a much bigger window
to block and be woken up elsewhere before the stopper runs.
Make migration_cpu_stop() always look at pending affinity requests; signal
their completion if the stopper hits a rq mismatch but the task is
still within its allowed mask. When Migrate-Disable isn't involved, this
matches the previous set_cpus_allowed_ptr() vs migration_cpu_stop()
behaviour.
Fixes: 6d337eab04 ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/8b62fd1ad1b18def27f18e2ee2df3ff5b36d0762.camel@redhat.com
schedule_user() was traditionally used by the entry code's tail to
preempt userspace after the call to user_enter(). Indeed the call to
user_enter() used to be performed upon syscall exit slow path which was
right before the last opportunity to schedule() while resuming to
userspace. The context tracking state had to be saved on the task stack
and set back to CONTEXT_KERNEL temporarily in order to safely switch to
another task.
Only a few archs use it now (namely sparc64 and powerpc64) and those
implementing HAVE_CONTEXT_TRACKING_OFFSTACK definetly can't rely on it.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201117151637.259084-5-frederic@kernel.org
Detect calls to schedule() between user_enter() and user_exit(). Those
are symptoms of early entry code that either forgot to protect a call
to schedule() inside exception_enter()/exception_exit() or, in the case
of HAVE_CONTEXT_TRACKING_OFFSTACK, enabled interrupts or preemption in
a wrong spot.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201117151637.259084-4-frederic@kernel.org
Glenn reported that "an application [he developed produces] a BUG in
deadline.c when a SCHED_DEADLINE task contends with CFS tasks on nested
PTHREAD_PRIO_INHERIT mutexes. I believe the bug is triggered when a CFS
task that was boosted by a SCHED_DEADLINE task boosts another CFS task
(nested priority inheritance).
------------[ cut here ]------------
kernel BUG at kernel/sched/deadline.c:1462!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 12 PID: 19171 Comm: dl_boost_bug Tainted: ...
Hardware name: ...
RIP: 0010:enqueue_task_dl+0x335/0x910
Code: ...
RSP: 0018:ffffc9000c2bbc68 EFLAGS: 00010002
RAX: 0000000000000009 RBX: ffff888c0af94c00 RCX: ffffffff81e12500
RDX: 000000000000002e RSI: ffff888c0af94c00 RDI: ffff888c10b22600
RBP: ffffc9000c2bbd08 R08: 0000000000000009 R09: 0000000000000078
R10: ffffffff81e12440 R11: ffffffff81e1236c R12: ffff888bc8932600
R13: ffff888c0af94eb8 R14: ffff888c10b22600 R15: ffff888bc8932600
FS: 00007fa58ac55700(0000) GS:ffff888c10b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa58b523230 CR3: 0000000bf44ab003 CR4: 00000000007606e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
? intel_pstate_update_util_hwp+0x13/0x170
rt_mutex_setprio+0x1cc/0x4b0
task_blocks_on_rt_mutex+0x225/0x260
rt_spin_lock_slowlock_locked+0xab/0x2d0
rt_spin_lock_slowlock+0x50/0x80
hrtimer_grab_expiry_lock+0x20/0x30
hrtimer_cancel+0x13/0x30
do_nanosleep+0xa0/0x150
hrtimer_nanosleep+0xe1/0x230
? __hrtimer_init_sleeper+0x60/0x60
__x64_sys_nanosleep+0x8d/0xa0
do_syscall_64+0x4a/0x100
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7fa58b52330d
...
---[ end trace 0000000000000002 ]—
He also provided a simple reproducer creating the situation below:
So the execution order of locking steps are the following
(N1 and N2 are non-deadline tasks. D1 is a deadline task. M1 and M2
are mutexes that are enabled * with priority inheritance.)
Time moves forward as this timeline goes down:
N1 N2 D1
| | |
| | |
Lock(M1) | |
| | |
| Lock(M2) |
| | |
| | Lock(M2)
| | |
| Lock(M1) |
| (!!bug triggered!) |
Daniel reported a similar situation as well, by just letting ksoftirqd
run with DEADLINE (and eventually block on a mutex).
Problem is that boosted entities (Priority Inheritance) use static
DEADLINE parameters of the top priority waiter. However, there might be
cases where top waiter could be a non-DEADLINE entity that is currently
boosted by a DEADLINE entity from a different lock chain (i.e., nested
priority chains involving entities of non-DEADLINE classes). In this
case, top waiter static DEADLINE parameters could be null (initialized
to 0 at fork()) and replenish_dl_entity() would hit a BUG().
Fix this by keeping track of the original donor and using its parameters
when a task is boosted.
Reported-by: Glenn Elliott <glenn@aurora.tech>
Reported-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201117061432.517340-1-juri.lelli@redhat.com
schedule() ttwu()
deactivate_task(); if (p->on_rq && ...) // false
atomic_dec(&task_rq(p)->nr_iowait);
if (prev->in_iowait)
atomic_inc(&rq->nr_iowait);
Allows nr_iowait to be decremented before it gets incremented,
resulting in more dodgy IO-wait numbers than usual.
Note that because we can now do ttwu_queue_wakelist() before
p->on_cpu==0, we lose the natural ordering and have to further delay
the decrement.
Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20201117093829.GD3121429@hirez.programming.kicks-ass.net
Only select_task_rq_fair() uses that parameter to do an actual domain
search, other classes only care about what kind of wakeup is happening
(fork, exec, or "regular") and thus just translate the flag into a wakeup
type.
WF_TTWU and WF_EXEC have just been added, use these along with WF_FORK to
encode the wakeup types we care about. For select_task_rq_fair(), we can
simply use the shiny new WF_flag : SD_flag mapping.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-3-valentin.schneider@arm.com
In order to minimize the interference of migrate_disable() on lower
priority tasks, which can be deprived of runtime due to being stuck
below a higher priority task. Teach the RT/DL balancers to push away
these higher priority tasks when a lower priority task gets selected
to run on a freshly demoted CPU (pull).
This adds migration interference to the higher priority task, but
restores bandwidth to system that would otherwise be irrevocably lost.
Without this it would be possible to have all tasks on the system
stuck on a single CPU, each task preempted in a migrate_disable()
section with a single high priority task running.
This way we can still approximate running the M highest priority tasks
on the system.
Migrating the top task away is (ofcourse) still subject to
migrate_disable() too, which means the lower task is subject to an
interference equivalent to the worst case migrate_disable() section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.499155098@infradead.org
There's a valid ->pi_lock recursion issue where the actual PI code
tries to wake up the stop task. Make lockdep aware so it doesn't
complain about this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.406912197@infradead.org
On CPU unplug tasks which are in a migrate disabled region cannot be pushed
to a different CPU until they returned to migrateable state.
Account the number of tasks on a runqueue which are in a migrate disabled
section and make the hotplug wait mechanism respect that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.067278757@infradead.org
Concurrent migrate_disable() and set_cpus_allowed_ptr() has
interesting features. We rely on set_cpus_allowed_ptr() to not return
until the task runs inside the provided mask. This expectation is
exported to userspace.
This means that any set_cpus_allowed_ptr() caller must wait until
migrate_enable() allows migrations.
At the same time, we don't want migrate_enable() to schedule, due to
patterns like:
preempt_disable();
migrate_disable();
...
migrate_enable();
preempt_enable();
And:
raw_spin_lock(&B);
spin_unlock(&A);
this means that when migrate_enable() must restore the affinity
mask, it cannot wait for completion thereof. Luck will have it that
that is exactly the case where there is a pending
set_cpus_allowed_ptr(), so let that provide storage for the async stop
machine.
Much thanks to Valentin who used TLA+ most effective and found lots of
'interesting' cases.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.921768277@infradead.org
Add the base migrate_disable() support (under protest).
While migrate_disable() is (currently) required for PREEMPT_RT, it is
also one of the biggest flaws in the system.
Notably this is just the base implementation, it is broken vs
sched_setaffinity() and hotplug, both solved in additional patches for
ease of review.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.818170844@infradead.org
Thread a u32 flags word through the *set_cpus_allowed*() callchain.
This will allow adding behavioural tweaks for future users.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.729082820@infradead.org
Since we now migrate tasks away before DYING, we should also move
bandwidth unthrottle, otherwise we can gain tasks from unthrottle
after we expect all tasks to be gone already.
Also; it looks like the RT balancers don't respect cpu_active() and
instead rely on rq->online in part, complete this. This too requires
we do set_rq_offline() earlier to match the cpu_active() semantics.
(The bigger patch is to convert RT to cpu_active() entirely)
Since set_rq_online() is called from sched_cpu_activate(), place
set_rq_offline() in sched_cpu_deactivate().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.639538965@infradead.org
With the new mechanism which kicks tasks off the outgoing CPU at the end of
schedule() the situation on an outgoing CPU right before the stopper thread
brings it down completely is:
- All user tasks and all unbound kernel threads have either been migrated
away or are not running and the next wakeup will move them to a online CPU.
- All per CPU kernel threads, except cpu hotplug thread and the stopper
thread have either been unbound or parked by the responsible CPU hotplug
callback.
That means that at the last step before the stopper thread is invoked the
cpu hotplug thread is the last legitimate running task on the outgoing
CPU.
Add a final wait step right before the stopper thread is kicked which
ensures that any still running tasks on the way to park or on the way to
kick themself of the CPU are either sleeping or gone.
This allows to remove the migrate_tasks() crutch in sched_cpu_dying(). If
sched_cpu_dying() detects that there is still another running task aside of
the stopper thread then it will explode with the appropriate fireworks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.547163969@infradead.org
RT kernels need to ensure that all tasks which are not per CPU kthreads
have left the outgoing CPU to guarantee that no tasks are force migrated
within a migrate disabled section.
There is also some desire to (ab)use fine grained CPU hotplug control to
clear a CPU from active state to force migrate tasks which are not per CPU
kthreads away for power control purposes.
Add a mechanism which waits until all tasks which should leave the CPU
after the CPU active flag is cleared have moved to a different online CPU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.377836842@infradead.org
In preparation for migrate_disable(), make sure only per-cpu kthreads
are allowed to run on !active CPUs.
This is ran (as one of the very first steps) from the cpu-hotplug
task which is a per-cpu kthread and completion of the hotplug
operation only requires such tasks.
This constraint enables the migrate_disable() implementation to wait
for completion of all migrate_disable regions on this CPU at hotplug
time without fear of any new ones starting.
This replaces the unlikely(rq->balance_callbacks) test at the tail of
context_switch with an unlikely(rq->balance_work), the fast path is
not affected.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.292709163@infradead.org
The intent of balance_callback() has always been to delay executing
balancing operations until the end of the current rq->lock section.
This is because balance operations must often drop rq->lock, and that
isn't safe in general.
However, as noted by Scott, there were a few holes in that scheme;
balance_callback() was called after rq->lock was dropped, which means
another CPU can interleave and touch the callback list.
Rework code to call the balance callbacks before dropping rq->lock
where possible, and otherwise splice the balance list onto a local
stack.
This guarantees that the balance list must be empty when we take
rq->lock. IOW, we'll only ever run our own balance callbacks.
Reported-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.203901269@infradead.org
Crashes in stop-machine are hard to connect to the calling code, add a
little something to help with that.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.116513635@infradead.org
do_sched_yield() invokes schedule() with interrupts disabled which is
not allowed. This goes back to the pre git era to commit a6efb709806c
("[PATCH] irqlock patch 2.5.27-H6") in the history tree.
Reenable interrupts and remove the misleading comment which "explains" it.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/87r1pt7y5c.fsf@nanos.tec.linutronix.de
Commit:
765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
made sched features static for !CONFIG_SCHED_DEBUG configurations, but
overlooked the CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL cases.
For the latter echoing changes to /sys/kernel/debug/sched_features has
the nasty effect of effectively changing what sched_features reports,
but without actually changing the scheduler behaviour (since different
translation units get different sysctl_sched_features).
Fix CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL configurations by properly
restructuring ifdefs.
Fixes: 765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
Co-developed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20201013053114.160628-1-juri.lelli@redhat.com
- Reorganize & clean up the SD* flags definitions and add a bunch
of sanity checks. These new checks caught quite a few bugs or at
least inconsistencies, resulting in another set of patches.
- Rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
- Add a new tracepoint to improve CPU capacity tracking
- Improve overloaded SMP system load-balancing behavior
- Tweak SMT balancing
- Energy-aware scheduling updates
- NUMA balancing improvements
- Deadline scheduler fixes and improvements
- CPU isolation fixes
- Misc cleanups, simplifications and smaller optimizations.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl+EWRERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hV8A/7BB0nt/zYVZ8Z3Di8V0b9hMtr0d1xtRM5
ZAvg4hcZl/fVgobFndxBw6KdlK8lSce9Mcq+bTTWeD46CS13cK5Vrpiaf7x7Q00P
m8YHeYEH13ME0pbBrhDoRCR4XzfXukzjkUl7LiyrTekAvRUtFikJ/uKl8MeJtYGZ
gANEkadqforxUW0v45iUEGepmCWAl8hSlSMb2mDKsVhw4DFMD+px0EBmmA0VDqjE
e0rkh6dEoUVNqlic2KoaXULld1rLg1xiaOcLUbTAXnucfhmuv5p/H11AC4ABuf+s
7d0zLrLEfZrcLJkthYxfMHs7DYMtARiQM9Db/a5hAq9Af4Z2bvvVAaHt3gCGvkV1
llB6BB2yWCki9Qv7oiGOAhANnyJHG/cU4r6WwMuHdlYi4dFT/iN5qkOMUL1IrDgi
a6ZzvECChXBeisQXHSlMd8Y5O+j0gRvDR7E18z2q0/PlmO8PGJq4w34mEWveWIg3
LaVF16bmvaARuNFJTQH/zaHhjqVQANSMx5OIv9swp0OkwvQkw21ICYHG0YxfzWCr
oa/FESEpOL9XdYp8UwMPI0bmVIsEfx79pmDMF3zInYTpJpwMUhV2yjHE8uYVMqEf
7U8rZv7gdbZ2us38Gjf2l73hY+recp/GrgZKnk0R98OUeMk1l/iVP6dwco6ITUV5
czGmKlIB1ec=
=bXy6
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- reorganize & clean up the SD* flags definitions and add a bunch of
sanity checks. These new checks caught quite a few bugs or at least
inconsistencies, resulting in another set of patches.
- rseq updates, add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
- add a new tracepoint to improve CPU capacity tracking
- improve overloaded SMP system load-balancing behavior
- tweak SMT balancing
- energy-aware scheduling updates
- NUMA balancing improvements
- deadline scheduler fixes and improvements
- CPU isolation fixes
- misc cleanups, simplifications and smaller optimizations
* tag 'sched-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
sched/deadline: Unthrottle PI boosted threads while enqueuing
sched/debug: Add new tracepoint to track cpu_capacity
sched/fair: Tweak pick_next_entity()
rseq/selftests: Test MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
rseq/selftests,x86_64: Add rseq_offset_deref_addv()
rseq/membarrier: Add MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ
sched/fair: Use dst group while checking imbalance for NUMA balancer
sched/fair: Reduce busy load balance interval
sched/fair: Minimize concurrent LBs between domain level
sched/fair: Reduce minimal imbalance threshold
sched/fair: Relax constraint on task's load during load balance
sched/fair: Remove the force parameter of update_tg_load_avg()
sched/fair: Fix wrong cpu selecting from isolated domain
sched: Remove unused inline function uclamp_bucket_base_value()
sched/rt: Disable RT_RUNTIME_SHARE by default
sched/deadline: Fix stale throttling on de-/boosted tasks
sched/numa: Use runnable_avg to classify node
sched/topology: Move sd_flag_debug out of #ifdef CONFIG_SYSCTL
MAINTAINERS: Add myself as SCHED_DEADLINE reviewer
sched/topology: Move SD_DEGENERATE_GROUPS_MASK out of linux/sched/topology.h
...
rq->cpu_capacity is a key element in several scheduler parts, such as EAS
task placement and load balancing. Tracking this value enables testing
and/or debugging by a toolkit.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1598605249-72651-1-git-send-email-vincent.donnefort@arm.com
There is no caller in tree, so can remove it.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20200922132410.48440-1-yuehaibing@huawei.com
sched_submit_work() is considered to be a hot path. The preempt_disable()
instruction is a compiler barrier and forces the compiler to load
task_struct::flags for the second comparison.
By using a local variable, the compiler can load the value once and keep it in
a register for the second comparison.
Verified on x86-64 with gcc-10.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200819200025.lqvmyefqnbok5i4f@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl83xXMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hwRQ/+LC7yzLFMy+OpvuRp/ZY02VtL7oZdCVAS
QFYrvmelsPrfbOzfuevGEg5jCHfJ6sL6Q4O06O/ktMUSsQ1HNc+esbTpbea9L/8X
ynpujYXDm2AwiYQS2Bh/jDQVIUqJRfyNVpYWgIWTUq4QULh248vx4LGGYk/LQJtD
FmuHT/Hc2xIPc01gAY24npSrPOlTJEm9HsfSpFqinXkNFlyocvRc2VwBnI1q/Dxt
NVT18/8gb5dpaB3kRJyjuyNz88wJj7Rh65I/NebW9vvWincQzt7OJOutjnx/BzGG
k5hMo/oPwCBRlPZ5X1fbsEjv/vXsXYtByNtNMljP3yFaR42F+pZ+5ySYNTtzyya8
BuicHMlrj+kueEXzfYIxcFaI0u0zZV9OCxNQI7T86j5YJyKj2c5xIvkj20r+4U3N
4biuCawvGNyfbw5X8se9yy1EEsw36UaeKNpoMQKcdpGDVskj2POMcyC06qMqahXX
/LcIwKyXDwCKbJOz+NOQNY4ZvJSS3kcCYfTmEcaBs7UR6gFRAlwfrh54SDGLp8au
t6MEj5GI51RWjo8S0KFBhqg+1sNqdRw2mvcabeRX1vHb/ter3AcHi2of4bSoAF4E
GRKK2gfAkmvGc7cLjHEWvSjUPBS/gQgzNMhnyyFL8fEiL/juY5fCLnamuajWEmnF
k6LA71AwkNY=
=ffEv
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Two fixes: fix a new tracepoint's output value, and fix the formatting
of show-state syslog printouts"
* tag 'sched-urgent-2020-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/debug: Fix the alignment of the show-state debug output
sched: Fix use of count for nr_running tracepoint
Current sysrq(t) output task fields name are not aligned with
actual task fields value, e.g.:
kernel: sysrq: Show State
kernel: task PC stack pid father
kernel: systemd S12456 1 0 0x00000000
kernel: Call Trace:
kernel: ? __schedule+0x240/0x740
To make it more readable, print fields name together with task fields
value in the same line, with fixed width:
kernel: sysrq: Show State
kernel: task:systemd state:S stack:12920 pid: 1 ppid: 0 flags:0x00000000
kernel: Call Trace:
kernel: __schedule+0x282/0x620
Signed-off-by: Libing Zhou <libing.zhou@nokia-sbell.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200814030236.37835-1-libing.zhou@nokia-sbell.com
static priority level knowledge from non-scheduler code.
The three APIs for non-scheduler code to set SCHED_FIFO are:
- sched_set_fifo()
- sched_set_fifo_low()
- sched_set_normal()
These are two FIFO priority levels: default (high), and a 'low' priority level,
plus sched_set_normal() to set the policy back to non-SCHED_FIFO.
Since the changes affect a lot of non-scheduler code, we kept this in a separate
tree.
When merging to the latest upstream tree there's a conflict in drivers/spi/spi.c,
which can be resolved via:
sched_set_fifo(ctlr->kworker_task);
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8pPQIRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j0Jw/+LlSyX6gD2ATy3cizGL7DFPZogD5MVKTb
IXbhXH/ACpuPQlBe1+haRLbJj6XfXqbOlAleVKt7eh+jZ1jYjC972RCSTO4566mJ
0v8Iy9kkEeb2TDbYx1H3bnk78lf85t0CB+sCzyKUYFuTrXU04eRj7MtN3vAQyRQU
xJg83x/sT5DGdDTP50sL7lpbwk3INWkD0aDCJEaO/a9yHElMsTZiZBKoXxN/s30o
FsfzW56jqtng771H2bo8ERN7+abwJg10crQU5mIaLhacNMETuz0NZ/f8fY/fydCL
Ju8HAdNKNXyphWkAOmixQuyYtWKe2/GfbHg8hld0jmpwxkOSTgZjY+pFcv7/w306
g2l1TPOt8e1n5jbfnY3eig+9Kr8y0qHkXPfLfgRqKwMMaOqTTYixEzj+NdxEIRX9
Kr7oFAv6VEFfXGSpb5L1qyjIGVgQ5/JE/p3OC3GHEsw5VKiy5yjhNLoSmSGzdS61
1YurVvypSEUAn3DqTXgeGX76f0HH365fIKqmbFrUWxliF+YyflMhtrj2JFtejGzH
Md3RgAzxusE9S6k3gw1ev4byh167bPBbY8jz0w3Gd7IBRKy9vo92h6ZRYIl6xeoC
BU2To1IhCAydIr6hNsIiCSDTgiLbsYQzPuVVovUxNh+l1ZvKV2X+csEHhs8oW4pr
4BRU7dKL2NE=
=/7JH
-----END PGP SIGNATURE-----
Merge tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull sched/fifo updates from Ingo Molnar:
"This adds the sched_set_fifo*() encapsulation APIs to remove static
priority level knowledge from non-scheduler code.
The three APIs for non-scheduler code to set SCHED_FIFO are:
- sched_set_fifo()
- sched_set_fifo_low()
- sched_set_normal()
These are two FIFO priority levels: default (high), and a 'low'
priority level, plus sched_set_normal() to set the policy back to
non-SCHED_FIFO.
Since the changes affect a lot of non-scheduler code, we kept this in
a separate tree"
* tag 'sched-fifo-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
sched,tracing: Convert to sched_set_fifo()
sched: Remove sched_set_*() return value
sched: Remove sched_setscheduler*() EXPORTs
sched,psi: Convert to sched_set_fifo_low()
sched,rcutorture: Convert to sched_set_fifo_low()
sched,rcuperf: Convert to sched_set_fifo_low()
sched,locktorture: Convert to sched_set_fifo()
sched,irq: Convert to sched_set_fifo()
sched,watchdog: Convert to sched_set_fifo()
sched,serial: Convert to sched_set_fifo()
sched,powerclamp: Convert to sched_set_fifo()
sched,ion: Convert to sched_set_normal()
sched,powercap: Convert to sched_set_fifo*()
sched,spi: Convert to sched_set_fifo*()
sched,mmc: Convert to sched_set_fifo*()
sched,ivtv: Convert to sched_set_fifo*()
sched,drm/scheduler: Convert to sched_set_fifo*()
sched,msm: Convert to sched_set_fifo*()
sched,psci: Convert to sched_set_fifo*()
sched,drbd: Convert to sched_set_fifo*()
...
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the values
become larger. This is now replaced with more precise arithmetics,
using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oJDURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ixLg//bqWzFlfWirvngTgDxDnplwUTyKXmMCcq
R1IYhlyK2O5FxvhbRmdmW11W3yzyTPvgCs6Q/70negGaPNe2w1OxfxiK9NMKz5eu
M1LoXas7pL5g7Pr/ZxxHk/8VqJLV4t9MkodiiInmV6lTaznT3sU6a/kpYQjJyFnG
Tuu9jd6JhdRKmePDJnNmUBoGQ7JiOQDcX4HtkcQ3OA+An3624tmJzbW1yts+uj7J
ZWo2EY60RfbA9MxQXGPOaR/nAjngWs4Q6tddAh10mftsPq1gR2iFUKju1d31MQt/
RHLdiqJf+AyUC4popKG7a+7ilCKMBwPociSreTJNPyEUQ1X4AM3vUVk4yjUoiDph
k2WdsCF8/JRdhXg0NnrpPUqOaAbQj53EeXnitEb92E7WyTZgLOvAtpV//xZo6utp
2QHerfrQ9SoGQjz/ho78za5vQtV1x25yDhd+X4XV4QEhIy85G9/2JCpC/Kc/TXLf
OO7A4X69XztKTEJhP60g8ldCPUe4N2vbh1vKY6oAD8AFQVVNZ6n7375/Qa//b0/k
++hcYkPc2EK97/aBFdvzDgqb7aUo7Mtn2ibke16sQU4szulaoRuAHQG4jdGKMwbD
dk2VBoxyxeYFXWHsNneSe87+ha3sd0dSN0ul1EB/SlFrVELMvy634YXnMYGW8ima
PzyPB0ezpuA=
=PbO7
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
RT tasks by default run at the highest capacity/performance level. When
uclamp is selected this default behavior is retained by enforcing the
requested uclamp.min (p->uclamp_req[UCLAMP_MIN]) of the RT tasks to be
uclamp_none(UCLAMP_MAX), which is SCHED_CAPACITY_SCALE; the maximum
value.
This is also referred to as 'the default boost value of RT tasks'.
See commit 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks").
On battery powered devices, it is desired to control this default
(currently hardcoded) behavior at runtime to reduce energy consumed by
RT tasks.
For example, a mobile device manufacturer where big.LITTLE architecture
is dominant, the performance of the little cores varies across SoCs, and
on high end ones the big cores could be too power hungry.
Given the diversity of SoCs, the new knob allows manufactures to tune
the best performance/power for RT tasks for the particular hardware they
run on.
They could opt to further tune the value when the user selects
a different power saving mode or when the device is actively charging.
The runtime aspect of it further helps in creating a single kernel image
that can be run on multiple devices that require different tuning.
Keep in mind that a lot of RT tasks in the system are created by the
kernel. On Android for instance I can see over 50 RT tasks, only
a handful of which created by the Android framework.
To control the default behavior globally by system admins and device
integrator, introduce the new sysctl_sched_uclamp_util_min_rt_default
to change the default boost value of the RT tasks.
I anticipate this to be mostly in the form of modifying the init script
of a particular device.
To avoid polluting the fast path with unnecessary code, the approach
taken is to synchronously do the update by traversing all the existing
tasks in the system. This could race with a concurrent fork(), which is
dealt with by introducing sched_post_fork() function which will ensure
the racy fork will get the right update applied.
Tested on Juno-r2 in combination with the RT capacity awareness [1].
By default an RT task will go to the highest capacity CPU and run at the
maximum frequency, which is particularly energy inefficient on high end
mobile devices because the biggest core[s] are 'huge' and power hungry.
With this patch the RT task can be controlled to run anywhere by
default, and doesn't cause the frequency to be maximum all the time.
Yet any task that really needs to be boosted can easily escape this
default behavior by modifying its requested uclamp.min value
(p->uclamp_req[UCLAMP_MIN]) via sched_setattr() syscall.
[1] 804d402fb6f6: ("sched/rt: Make RT capacity-aware")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-2-qais.yousef@arm.com
The following splat was caught when setting uclamp value of a task:
BUG: sleeping function called from invalid context at ./include/linux/percpu-rwsem.h:49
cpus_read_lock+0x68/0x130
static_key_enable+0x1c/0x38
__sched_setscheduler+0x900/0xad8
Fix by ensuring we enable the key outside of the critical section in
__sched_setscheduler()
Fixes: 46609ce227 ("sched/uclamp: Protect uclamp fast path code with static key")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-4-qais.yousef@arm.com
The uclamp_mutex lock is initialized statically via DEFINE_MUTEX(),
it is unnecessary to initialize it runtime via mutex_init().
Signed-off-by: Qinglang Miao <miaoqinglang@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Patrick Bellasi <patrick.bellasi@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20200725085629.98292-1-miaoqinglang@huawei.com
Since the default_wake_function() passes its flags onto
try_to_wake_up(), warn if those flags collide with internal values.
Given that the supplied flags are garbage, no repair can be done but at
least alert the user to the damage they are causing.
In the belief that these errors should be picked up during testing, the
warning is only compiled in under CONFIG_SCHED_DEBUG.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: https://lore.kernel.org/r/20200723201042.18861-1-chris@chris-wilson.co.uk
The following commit:
14533a16c4 ("thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code")
moved the definition of arch_set_thermal_pressure() to sched/core.c, but
kept its declaration in linux/arch_topology.h. When building e.g. an x86
kernel with CONFIG_SCHED_THERMAL_PRESSURE=y, cpufreq_cooling.c ends up
getting the declaration of arch_set_thermal_pressure() from
include/linux/arch_topology.h, which is somewhat awkward.
On top of this, sched/core.c unconditionally defines
o The thermal_pressure percpu variable
o arch_set_thermal_pressure()
while arch_scale_thermal_pressure() does nothing unless redefined by the
architecture.
arch_*() functions are meant to be defined by architectures, so revert the
aforementioned commit and re-implement it in a way that keeps
arch_set_thermal_pressure() architecture-definable, and doesn't define the
thermal pressure percpu variable for kernels that don't need
it (CONFIG_SCHED_THERMAL_PRESSURE=n).
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200712165917.9168-2-valentin.schneider@arm.com
Dave hit the problem fixed by commit:
b6e13e8582 ("sched/core: Fix ttwu() race")
and failed to understand much of the code involved. Per his request a
few comments to (hopefully) clarify things.
Requested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200702125211.GQ4800@hirez.programming.kicks-ass.net
There is apparently one site that violates the rule that only current
and ttwu() will modify task->state, namely ptrace_{,un}freeze_traced()
will change task->state for a remote task.
Oleg explains:
"TASK_TRACED/TASK_STOPPED was always protected by siglock. In
particular, ttwu(__TASK_TRACED) must be always called with siglock
held. That is why ptrace_freeze_traced() assumes it can safely do
s/TASK_TRACED/__TASK_TRACED/ under spin_lock(siglock)."
This breaks the ordering scheme introduced by commit:
dbfb089d36 ("sched: Fix loadavg accounting race")
Specifically, the reload not matching no longer implies we don't have
to block.
Simply things by noting that what we need is a LOAD->STORE ordering
and this can be provided by a control dependency.
So replace:
prev_state = prev->state;
raw_spin_lock(&rq->lock);
smp_mb__after_spinlock(); /* SMP-MB */
if (... && prev_state && prev_state == prev->state)
deactivate_task();
with:
prev_state = prev->state;
if (... && prev_state) /* CTRL-DEP */
deactivate_task();
Since that already implies the 'prev->state' load must be complete
before allowing the 'prev->on_rq = 0' store to become visible.
Fixes: dbfb089d36 ("sched: Fix loadavg accounting race")
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Tested-by: Christian Brauner <christian.brauner@ubuntu.com>
Add a bare tracepoint trace_sched_update_nr_running_tp which tracks
->nr_running CPU's rq. This is used to accurately trace this data and
provide a visualization of scheduler imbalances in, for example, the
form of a heat map. The tracepoint is accessed by loading an external
kernel module. An example module (forked from Qais' module and including
the pelt related tracepoints) can be found at:
https://github.com/auldp/tracepoints-helpers.git
A script to turn the trace-cmd report output into a heatmap plot can be
found at:
https://github.com/jirvoz/plot-nr-running
The tracepoints are added to add_nr_running() and sub_nr_running() which
are in kernel/sched/sched.h. In order to avoid CREATE_TRACE_POINTS in
the header a wrapper call is used and the trace/events/sched.h include
is moved before sched.h in kernel/sched/core.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200629192303.GC120228@lorien.usersys.redhat.com
There is a report that when uclamp is enabled, a netperf UDP test
regresses compared to a kernel compiled without uclamp.
https://lore.kernel.org/lkml/20200529100806.GA3070@suse.de/
While investigating the root cause, there were no sign that the uclamp
code is doing anything particularly expensive but could suffer from bad
cache behavior under certain circumstances that are yet to be
understood.
https://lore.kernel.org/lkml/20200616110824.dgkkbyapn3io6wik@e107158-lin/
To reduce the pressure on the fast path anyway, add a static key that is
by default will skip executing uclamp logic in the
enqueue/dequeue_task() fast path until it's needed.
As soon as the user start using util clamp by:
1. Changing uclamp value of a task with sched_setattr()
2. Modifying the default sysctl_sched_util_clamp_{min, max}
3. Modifying the default cpu.uclamp.{min, max} value in cgroup
We flip the static key now that the user has opted to use util clamp.
Effectively re-introducing uclamp logic in the enqueue/dequeue_task()
fast path. It stays on from that point forward until the next reboot.
This should help minimize the effect of util clamp on workloads that
don't need it but still allow distros to ship their kernels with uclamp
compiled in by default.
SCHED_WARN_ON() in uclamp_rq_dec_id() was removed since now we can end
up with unbalanced call to uclamp_rq_dec_id() if we flip the key while
a task is running in the rq. Since we know it is harmless we just
quietly return if we attempt a uclamp_rq_dec_id() when
rq->uclamp[].bucket[].tasks is 0.
In schedutil, we introduce a new uclamp_is_enabled() helper which takes
the static key into account to ensure RT boosting behavior is retained.
The following results demonstrates how this helps on 2 Sockets Xeon E5
2x10-Cores system.
nouclamp uclamp uclamp-static-key
Hmean send-64 162.43 ( 0.00%) 157.84 * -2.82%* 163.39 * 0.59%*
Hmean send-128 324.71 ( 0.00%) 314.78 * -3.06%* 326.18 * 0.45%*
Hmean send-256 641.55 ( 0.00%) 628.67 * -2.01%* 648.12 * 1.02%*
Hmean send-1024 2525.28 ( 0.00%) 2448.26 * -3.05%* 2543.73 * 0.73%*
Hmean send-2048 4836.14 ( 0.00%) 4712.08 * -2.57%* 4867.69 * 0.65%*
Hmean send-3312 7540.83 ( 0.00%) 7425.45 * -1.53%* 7621.06 * 1.06%*
Hmean send-4096 9124.53 ( 0.00%) 8948.82 * -1.93%* 9276.25 * 1.66%*
Hmean send-8192 15589.67 ( 0.00%) 15486.35 * -0.66%* 15819.98 * 1.48%*
Hmean send-16384 26386.47 ( 0.00%) 25752.25 * -2.40%* 26773.74 * 1.47%*
The perf diff between nouclamp and uclamp-static-key when uclamp is
disabled in the fast path:
8.73% -1.55% [kernel.kallsyms] [k] try_to_wake_up
0.07% +0.04% [kernel.kallsyms] [k] deactivate_task
0.13% -0.02% [kernel.kallsyms] [k] activate_task
The diff between nouclamp and uclamp-static-key when uclamp is enabled
in the fast path:
8.73% -0.72% [kernel.kallsyms] [k] try_to_wake_up
0.13% +0.39% [kernel.kallsyms] [k] activate_task
0.07% +0.38% [kernel.kallsyms] [k] deactivate_task
Fixes: 69842cba9a ("sched/uclamp: Add CPU's clamp buckets refcounting")
Reported-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20200630112123.12076-3-qais.yousef@arm.com
struct uclamp_rq was zeroed out entirely in assumption that in the first
call to uclamp_rq_inc() they'd be initialized correctly in accordance to
default settings.
But when next patch introduces a static key to skip
uclamp_rq_{inc,dec}() until userspace opts in to use uclamp, schedutil
will fail to perform any frequency changes because the
rq->uclamp[UCLAMP_MAX].value is zeroed at init and stays as such. Which
means all rqs are capped to 0 by default.
Fix it by making sure we do proper initialization at init without
relying on uclamp_rq_inc() doing it later.
Fixes: 69842cba9a ("sched/uclamp: Add CPU's clamp buckets refcounting")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Link: https://lkml.kernel.org/r/20200630112123.12076-2-qais.yousef@arm.com
While integrating rseq into glibc and replacing glibc's sched_getcpu
implementation with rseq, glibc's tests discovered an issue with
incorrect __rseq_abi.cpu_id field value right after the first time
a newly created process issues sched_setaffinity.
For the records, it triggers after building glibc and running tests, and
then issuing:
for x in {1..2000} ; do posix/tst-affinity-static & done
and shows up as:
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 2, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
error: Unexpected CPU 138, expected 0
This is caused by the scheduler invoking __set_task_cpu() directly from
sched_fork() and wake_up_new_task(), thus bypassing rseq_migrate() which
is done by set_task_cpu().
Add the missing rseq_migrate() to both functions. The only other direct
use of __set_task_cpu() is done by init_idle(), which does not involve a
user-space task.
Based on my testing with the glibc test-case, just adding rseq_migrate()
to wake_up_new_task() is sufficient to fix the observed issue. Also add
it to sched_fork() to keep things consistent.
The reason why this never triggered so far with the rseq/basic_test
selftest is unclear.
The current use of sched_getcpu(3) does not typically require it to be
always accurate. However, use of the __rseq_abi.cpu_id field within rseq
critical sections requires it to be accurate. If it is not accurate, it
can cause corruption in the per-cpu data targeted by rseq critical
sections in user-space.
Reported-By: Florian Weimer <fweimer@redhat.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-By: Florian Weimer <fweimer@redhat.com>
Cc: stable@vger.kernel.org # v4.18+
Link: https://lkml.kernel.org/r/20200707201505.2632-1-mathieu.desnoyers@efficios.com
The recent commit:
c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
moved these lines in ttwu():
p->sched_contributes_to_load = !!task_contributes_to_load(p);
p->state = TASK_WAKING;
up before:
smp_cond_load_acquire(&p->on_cpu, !VAL);
into the 'p->on_rq == 0' block, with the thinking that once we hit
schedule() the current task cannot change it's ->state anymore. And
while this is true, it is both incorrect and flawed.
It is incorrect in that we need at least an ACQUIRE on 'p->on_rq == 0'
to avoid weak hardware from re-ordering things for us. This can fairly
easily be achieved by relying on the control-dependency already in
place.
The second problem, which makes the flaw in the original argument, is
that while schedule() will not change prev->state, it will read it a
number of times (arguably too many times since it's marked volatile).
The previous condition 'p->on_cpu == 0' was sufficient because that
indicates schedule() has completed, and will no longer read
prev->state. So now the trick is to make this same true for the (much)
earlier 'prev->on_rq == 0' case.
Furthermore, in order to make the ordering stick, the 'prev->on_rq = 0'
assignment needs to he a RELEASE, but adding additional ordering to
schedule() is an unwelcome proposition at the best of times, doubly so
for mere accounting.
Luckily we can push the prev->state load up before rq->lock, with the
only caveat that we then have to re-read the state after. However, we
know that if it changed, we no longer have to worry about the blocking
path. This gives us the required ordering, if we block, we did the
prev->state load before an (effective) smp_mb() and the p->on_rq store
needs not change.
With this we end up with the effective ordering:
LOAD p->state LOAD-ACQUIRE p->on_rq == 0
MB
STORE p->on_rq, 0 STORE p->state, TASK_WAKING
which ensures the TASK_WAKING store happens after the prev->state
load, and all is well again.
Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Reported-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Dave Jones <davej@codemonkey.org.uk>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Link: https://lkml.kernel.org/r/20200707102957.GN117543@hirez.programming.kicks-ass.net
Instead of relying on BUG_ON() to ensure the various data structures
line up, use a bunch of horrible unions to make it all automatic.
Much of the union magic is to ensure irq_work and smp_call_function do
not (yet) see the members of their respective data structures change
name.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20200622100825.844455025@infradead.org
Use a better name for this poorly named flag, to avoid confusion...
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200622100825.785115830@infradead.org
Paul reported rcutorture occasionally hitting a NULL deref:
sched_ttwu_pending()
ttwu_do_wakeup()
check_preempt_curr() := check_preempt_wakeup()
find_matching_se()
is_same_group()
if (se->cfs_rq == pse->cfs_rq) <-- *BOOM*
Debugging showed that this only appears to happen when we take the new
code-path from commit:
2ebb177175 ("sched/core: Offload wakee task activation if it the wakee is descheduling")
and only when @cpu == smp_processor_id(). Something which should not
be possible, because p->on_cpu can only be true for remote tasks.
Similarly, without the new code-path from commit:
c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
this would've unconditionally hit:
smp_cond_load_acquire(&p->on_cpu, !VAL);
and if: 'cpu == smp_processor_id() && p->on_cpu' is possible, this
would result in an instant live-lock (with IRQs disabled), something
that hasn't been reported.
The NULL deref can be explained however if the task_cpu(p) load at the
beginning of try_to_wake_up() returns an old value, and this old value
happens to be smp_processor_id(). Further assume that the p->on_cpu
load accurately returns 1, it really is still running, just not here.
Then, when we enqueue the task locally, we can crash in exactly the
observed manner because p->se.cfs_rq != rq->cfs_rq, because p's cfs_rq
is from the wrong CPU, therefore we'll iterate into the non-existant
parents and NULL deref.
The closest semi-plausible scenario I've managed to contrive is
somewhat elaborate (then again, actual reproduction takes many CPU
hours of rcutorture, so it can't be anything obvious):
X->cpu = 1
rq(1)->curr = X
CPU0 CPU1 CPU2
// switch away from X
LOCK rq(1)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 9
switch_to(Z)
X->on_cpu = 0
UNLOCK rq(1)->lock
// migrate X to cpu 0
LOCK rq(1)->lock
dequeue_task(X)
set_task_cpu(X, 0)
X->cpu = 0
UNLOCK rq(1)->lock
LOCK rq(0)->lock
enqueue_task(X)
X->on_rq = 1
UNLOCK rq(0)->lock
// switch to X
LOCK rq(0)->lock
smp_mb__after_spinlock
switch_to(X)
X->on_cpu = 1
UNLOCK rq(0)->lock
// X goes sleep
X->state = TASK_UNINTERRUPTIBLE
smp_mb(); // wake X
ttwu()
LOCK X->pi_lock
smp_mb__after_spinlock
if (p->state)
cpu = X->cpu; // =? 1
smp_rmb()
// X calls schedule()
LOCK rq(0)->lock
smp_mb__after_spinlock
dequeue_task(X)
X->on_rq = 0
if (p->on_rq)
smp_rmb();
if (p->on_cpu && ttwu_queue_wakelist(..)) [*]
smp_cond_load_acquire(&p->on_cpu, !VAL)
cpu = select_task_rq(X, X->wake_cpu, ...)
if (X->cpu != cpu)
switch_to(Y)
X->on_cpu = 0
UNLOCK rq(0)->lock
However I'm having trouble convincing myself that's actually possible
on x86_64 -- after all, every LOCK implies an smp_mb() there, so if ttwu
observes ->state != RUNNING, it must also observe ->cpu != 1.
(Most of the previous ttwu() races were found on very large PowerPC)
Nevertheless, this fully explains the observed failure case.
Fix it by ordering the task_cpu(p) load after the p->on_cpu load,
which is easy since nothing actually uses @cpu before this.
Fixes: c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200622125649.GC576871@hirez.programming.kicks-ass.net
syzbot reported the following warning:
WARNING: CPU: 1 PID: 6351 at kernel/sched/deadline.c:628
enqueue_task_dl+0x22da/0x38a0 kernel/sched/deadline.c:1504
At deadline.c:628 we have:
623 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
624 {
625 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
626 struct rq *rq = rq_of_dl_rq(dl_rq);
627
628 WARN_ON(dl_se->dl_boosted);
629 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
[...]
}
Which means that setup_new_dl_entity() has been called on a task
currently boosted. This shouldn't happen though, as setup_new_dl_entity()
is only called when the 'dynamic' deadline of the new entity
is in the past w.r.t. rq_clock and boosted tasks shouldn't verify this
condition.
Digging through the PI code I noticed that what above might in fact happen
if an RT tasks blocks on an rt_mutex hold by a DEADLINE task. In the
first branch of boosting conditions we check only if a pi_task 'dynamic'
deadline is earlier than mutex holder's and in this case we set mutex
holder to be dl_boosted. However, since RT 'dynamic' deadlines are only
initialized if such tasks get boosted at some point (or if they become
DEADLINE of course), in general RT 'dynamic' deadlines are usually equal
to 0 and this verifies the aforementioned condition.
Fix it by checking that the potential donor task is actually (even if
temporary because in turn boosted) running at DEADLINE priority before
using its 'dynamic' deadline value.
Fixes: 2d3d891d33 ("sched/deadline: Add SCHED_DEADLINE inheritance logic")
Reported-by: syzbot+119ba87189432ead09b4@syzkaller.appspotmail.com
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Tested-by: Daniel Wagner <dwagner@suse.de>
Link: https://lkml.kernel.org/r/20181119153201.GB2119@localhost.localdomain
This function is concerned with the long-term CPU mask, not the
transitory mask the task might have while migrate disabled. Before
this patch, if a task was migrate-disabled at the time
__set_cpus_allowed_ptr() was called, and the new mask happened to be
equal to the CPU that the task was running on, then the mask update
would be lost.
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200617121742.cpxppyi7twxmpin7@linutronix.de
This introduces an optimization based on xxx_sched_class addresses
in two hot scheduler functions: pick_next_task() and check_preempt_curr().
It is possible to compare pointers to sched classes to check, which
of them has a higher priority, instead of current iterations using
for_each_class().
One more result of the patch is that size of object file becomes a little
less (excluding added BUG_ON(), which goes in __init section):
$size kernel/sched/core.o
text data bss dec hex filename
before: 66446 18957 676 86079 1503f kernel/sched/core.o
after: 66398 18957 676 86031 1500f kernel/sched/core.o
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/711a9c4b-ff32-1136-b848-17c622d548f3@yandex.ru
Now that the sched_class descriptors are defined by the linker script, and
this needs to be aware of the existance of stop_sched_class when SMP is
enabled or not, as it is used as the "highest" priority when defined. Move
the declaration of sched_class_highest to the same location in the linker
script that inserts stop_sched_class, and this will also make it easier to
see what should be defined as the highest class, as this linker script
location defines the priorities as well.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20191219214558.682913590@goodmis.org
Ingo suggested that since the new sched_set_*() functions are
implemented using the 'nocheck' variants, they really shouldn't ever
fail, so remove the return value.
Cc: axboe@kernel.dk
Cc: daniel.lezcano@linaro.org
Cc: sudeep.holla@arm.com
Cc: airlied@redhat.com
Cc: broonie@kernel.org
Cc: paulmck@kernel.org
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Now that nothing (modular) still uses sched_setscheduler(), remove the
exports.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
SCHED_FIFO (or any static priority scheduler) is a broken scheduler
model; it is fundamentally incapable of resource management, the one
thing an OS is actually supposed to do.
It is impossible to compose static priority workloads. One cannot take
two well designed and functional static priority workloads and mash
them together and still expect them to work.
Therefore it doesn't make sense to expose the priority field; the
kernel is fundamentally incapable of setting a sensible value, it
needs systems knowledge that it doesn't have.
Take away sched_setschedule() / sched_setattr() from modules and
replace them with:
- sched_set_fifo(p); create a FIFO task (at prio 50)
- sched_set_fifo_low(p); create a task higher than NORMAL,
which ends up being a FIFO task at prio 1.
- sched_set_normal(p, nice); (re)set the task to normal
This stops the proliferation of randomly chosen, and irrelevant, FIFO
priorities that dont't really mean anything anyway.
The system administrator/integrator, whoever has insight into the
actual system design and requirements (userspace) can set-up
appropriate priorities if and when needed.
Cc: airlied@redhat.com
Cc: alexander.deucher@amd.com
Cc: awalls@md.metrocast.net
Cc: axboe@kernel.dk
Cc: broonie@kernel.org
Cc: daniel.lezcano@linaro.org
Cc: gregkh@linuxfoundation.org
Cc: hannes@cmpxchg.org
Cc: herbert@gondor.apana.org.au
Cc: hverkuil@xs4all.nl
Cc: john.stultz@linaro.org
Cc: nico@fluxnic.net
Cc: paulmck@kernel.org
Cc: rafael.j.wysocki@intel.com
Cc: rmk+kernel@arm.linux.org.uk
Cc: sudeep.holla@arm.com
Cc: tglx@linutronix.de
Cc: ulf.hansson@linaro.org
Cc: wim@linux-watchdog.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
The util_est signals are key elements for EAS task placement and
frequency selection. Having tracepoints to track these signals enables
load-tracking and schedutil testing and/or debugging by a toolkit.
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/1590597554-370150-1-git-send-email-vincent.donnefort@arm.com
Commit 6d1cafd8b5 ("sched: Resched proper CPU on yield_to()") moved
the code to resched the CPU from yield_to_task_fair() to yield_to()
making the preempt parameter in sched_class->yield_to_task()
unnecessary. Remove it. No other sched_class implements yield_to_task().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-3-dietmar.eggemann@arm.com
Now the last users of show_stack() got converted to use an explicit log
level, show_stack_loglvl() can drop it's redundant suffix and become once
again well known show_stack().
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-51-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aligning with other messages printed in sched_show_task() - use KERN_INFO
to print the backtrace.
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-49-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add log level to show_stack()", v3.
Add log level argument to show_stack().
Done in three stages:
1. Introducing show_stack_loglvl() for every architecture
2. Migrating old users with an explicit log level
3. Renaming show_stack_loglvl() into show_stack()
Justification:
- It's a design mistake to move a business-logic decision into platform
realization detail.
- I have currently two patches sets that would benefit from this work:
Removing console_loglevel jumps in sysrq driver [1] Hung task warning
before panic [2] - suggested by Tetsuo (but he probably didn't realise
what it would involve).
- While doing (1), (2) the backtraces were adjusted to headers and other
messages for each situation - so there won't be a situation when the
backtrace is printed, but the headers are missing because they have
lesser log level (or the reverse).
- As the result in (2) plays with console_loglevel for kdb are removed.
The least important for upstream, but maybe still worth to note that every
company I've worked in so far had an off-list patch to print backtrace
with the needed log level (but only for the architecture they cared
about). If you have other ideas how you will benefit from show_stack()
with a log level - please, reply to this cover letter.
See also discussion on v1:
https://lore.kernel.org/linux-riscv/20191106083538.z5nlpuf64cigxigh@pathway.suse.cz/
This patch (of 50):
print_ip_sym() needs to have a log level parameter to comply with other
parts being printed. Otherwise, half of the expected backtrace would be
printed and other may be missing with some logging level.
The following callee(s) are using now the adjusted log level:
- microblaze/unwind: the same level as headers & userspace unwind.
Note that pr_debug()'s there are for debugging the unwinder itself.
- nds32/traps: symbol addresses are printed with the same log level
as backtrace headers.
- lockdep: ip for locking issues is printed with the same log level
as other part of the warning.
- sched: ip where preemption was disabled is printed as error like
the rest part of the message.
- ftrace: bug reports are now consistent in the log level being used.
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Will Deacon <will@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Aurelien Jacquiot <jacquiot.aurelien@gmail.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Jason Wessel <jason.wessel@windriver.com>
Link: http://lkml.kernel.org/r/20200418201944.482088-2-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
- Optimize the task wakeup CPU selection logic, to improve scalability and
reduce wakeup latency spikes
- PELT enhancements
- CFS bandwidth handling fixes
- Optimize the wakeup path by remove rq->wake_list and replacing it with ->ttwu_pending
- Optimize IPI cross-calls by making flush_smp_call_function_queue()
process sync callbacks first.
- Misc fixes and enhancements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7WPL0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i0ThAAs0fbvMzNJ5SWFdwOQ4KZIlA+Im4dEBMK
sx/XAZqa/hGxvkm1jS0RDVQl1V1JdOlru5UF4C42ctnAFGtBBHDriO5rn9oCpkSw
DAoLc4eZqzldIXN6sDZ0xMtC14Eu15UAP40OyM4qxBc4GqGlOnnale6Vhn+n+pLQ
jAuZlMJIkmmzeA6cuvtultevrVh+QUqJ/5oNUANlTER4OM48umjr5rNTOb8cIW53
9K3vbS3nmqSvJuIyqfRFoMy5GFM6+Jj2+nYuq8aTuYLEtF4qqWzttS3wBzC9699g
XYRKILkCK8ZP4RB5Ps/DIKj6maZGZoICBxTJEkIgXujJlxlKKTD3mddk+0LBXChW
Ijznanxn67akoAFpqi/Dnkhieg7cUrE9v1OPRS2J0xy550synSPFcSgOK3viizga
iqbjptY4scUWkCwHQNjABerxc7MWzrwbIrRt+uNvCaqJLweUh0GnEcV5va8R+4I8
K20XwOdrzuPLo5KdDWA/BKOEv49guHZDvoykzlwMlR3gFfwHS/UsjzmSQIWK3gZG
9OMn8ibO2f1OzhRcEpDLFzp7IIj6NJmPFVSW+7xHyL9/vTveUx3ZXPLteb2qxJVP
BYPsduVx8YeGRBlLya0PJriB23ajQr0lnHWo15g0uR9o/0Ds1ephcymiF3QJmCaA
To3CyIuQN8M=
=C2OP
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The changes in this cycle are:
- Optimize the task wakeup CPU selection logic, to improve
scalability and reduce wakeup latency spikes
- PELT enhancements
- CFS bandwidth handling fixes
- Optimize the wakeup path by remove rq->wake_list and replacing it
with ->ttwu_pending
- Optimize IPI cross-calls by making flush_smp_call_function_queue()
process sync callbacks first.
- Misc fixes and enhancements"
* tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
irq_work: Define irq_work_single() on !CONFIG_IRQ_WORK too
sched/headers: Split out open-coded prototypes into kernel/sched/smp.h
sched: Replace rq::wake_list
sched: Add rq::ttwu_pending
irq_work, smp: Allow irq_work on call_single_queue
smp: Optimize send_call_function_single_ipi()
smp: Move irq_work_run() out of flush_smp_call_function_queue()
smp: Optimize flush_smp_call_function_queue()
sched: Fix smp_call_function_single_async() usage for ILB
sched/core: Offload wakee task activation if it the wakee is descheduling
sched/core: Optimize ttwu() spinning on p->on_cpu
sched: Defend cfs and rt bandwidth quota against overflow
sched/cpuacct: Fix charge cpuacct.usage_sys
sched/fair: Replace zero-length array with flexible-array
sched/pelt: Sync util/runnable_sum with PELT window when propagating
sched/cpuacct: Use __this_cpu_add() instead of this_cpu_ptr()
sched/fair: Optimize enqueue_task_fair()
sched: Make scheduler_ipi inline
sched: Clean up scheduler_ipi()
sched/core: Simplify sched_init()
...
- Branch Target Identification (BTI)
* Support for ARMv8.5-BTI in both user- and kernel-space. This
allows branch targets to limit the types of branch from which
they can be called and additionally prevents branching to
arbitrary code, although kernel support requires a very recent
toolchain.
* Function annotation via SYM_FUNC_START() so that assembly
functions are wrapped with the relevant "landing pad"
instructions.
* BPF and vDSO updates to use the new instructions.
* Addition of a new HWCAP and exposure of BTI capability to
userspace via ID register emulation, along with ELF loader
support for the BTI feature in .note.gnu.property.
* Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
- Shadow Call Stack (SCS)
* Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each
task that holds only return addresses. This protects function
return control flow from buffer overruns on the main stack.
* Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
* Core support for SCS, should other architectures want to use it
too.
* SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
- CPU feature detection
* Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a
concern for KVM, which disabled support for 32-bit guests on
such a system.
* Addition of new ID registers and fields as the architecture has
been extended.
- Perf and PMU drivers
* Minor fixes and cleanups to system PMU drivers.
- Hardware errata
* Unify KVM workarounds for VHE and nVHE configurations.
* Sort vendor errata entries in Kconfig.
- Secure Monitor Call Calling Convention (SMCCC)
* Update to the latest specification from Arm (v1.2).
* Allow PSCI code to query the SMCCC version.
- Software Delegated Exception Interface (SDEI)
* Unexport a bunch of unused symbols.
* Minor fixes to handling of firmware data.
- Pointer authentication
* Add support for dumping the kernel PAC mask in vmcoreinfo so
that the stack can be unwound by tools such as kdump.
* Simplification of key initialisation during CPU bringup.
- BPF backend
* Improve immediate generation for logical and add/sub
instructions.
- vDSO
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
- ACPI
- Work around for an ambiguity in the IORT specification relating
to the "num_ids" field.
- Support _DMA method for all named components rather than only
PCIe root complexes.
- Minor other IORT-related fixes.
- Miscellaneous
* Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
* Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC
yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9
jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU
JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx
HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv
znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q
=w3qi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
Move the prototypes for sched_ttwu_pending() and send_call_function_single_ipi()
into the newly created kernel/sched/smp.h header, to make sure they are all
the same, and to architectures happy that use -Wmissing-prototypes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in ttwu_queue_remote() got this wrong.
While on first reading ttwu_queue_remote() has an atomic test-and-set
that appears to serialize the use, the matching 'release' is not in
the right place to actually guarantee this serialization.
The actual race is vs the sched_ttwu_pending() call in the idle loop;
that can run the wakeup-list without consuming the CSD.
Instead of trying to chain the lists, merge them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.129371594@infradead.org
In preparation of removing rq->wake_list, replace the
!list_empty(rq->wake_list) with rq->ttwu_pending. This is not fully
equivalent as this new variable is racy.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161908.070399698@infradead.org
Just like the ttwu_queue_remote() IPI, make use of _TIF_POLLING_NRFLAG
to avoid sending IPIs to idle CPUs.
[ mingo: Fix UP build bug. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200526161907.953304789@infradead.org
The recent commit: 90b5363acd ("sched: Clean up scheduler_ipi()")
got smp_call_function_single_async() subtly wrong. Even though it will
return -EBUSY when trying to re-use a csd, that condition is not
atomic and still requires external serialization.
The change in kick_ilb() got this wrong.
While on first reading kick_ilb() has an atomic test-and-set that
appears to serialize the use, the matching 'release' is not in the
right place to actually guarantee this serialization.
Rework the nohz_idle_balance() trigger so that the release is in the
IPI callback and thus guarantees the required serialization for the
CSD.
Fixes: 90b5363acd ("sched: Clean up scheduler_ipi()")
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: mgorman@techsingularity.net
Link: https://lore.kernel.org/r/20200526161907.778543557@infradead.org
We are going to rely on the loosening of RCU callback semantics,
introduced by this commit:
806f04e9fd2c: ("rcu: Allow for smp_call_function() running callbacks from idle")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The previous commit:
c6e7bd7afaeb: ("sched/core: Optimize ttwu() spinning on p->on_cpu")
avoids spinning on p->on_rq when the task is descheduling, but only if the
wakee is on a CPU that does not share cache with the waker.
This patch offloads the activation of the wakee to the CPU that is about to
go idle if the task is the only one on the runqueue. This potentially allows
the waker task to continue making progress when the wakeup is not strictly
synchronous.
This is very obvious with netperf UDP_STREAM running on localhost. The
waker is sending packets as quickly as possible without waiting for any
reply. It frequently wakes the server for the processing of packets and
when netserver is using local memory, it quickly completes the processing
and goes back to idle. The waker often observes that netserver is on_rq
and spins excessively leading to a drop in throughput.
This is a comparison of 5.7-rc6 against "sched: Optimize ttwu() spinning
on p->on_cpu" and against this patch labeled vanilla, optttwu-v1r1 and
localwakelist-v1r2 respectively.
5.7.0-rc6 5.7.0-rc6 5.7.0-rc6
vanilla optttwu-v1r1 localwakelist-v1r2
Hmean send-64 251.49 ( 0.00%) 258.05 * 2.61%* 305.59 * 21.51%*
Hmean send-128 497.86 ( 0.00%) 519.89 * 4.43%* 600.25 * 20.57%*
Hmean send-256 944.90 ( 0.00%) 997.45 * 5.56%* 1140.19 * 20.67%*
Hmean send-1024 3779.03 ( 0.00%) 3859.18 * 2.12%* 4518.19 * 19.56%*
Hmean send-2048 7030.81 ( 0.00%) 7315.99 * 4.06%* 8683.01 * 23.50%*
Hmean send-3312 10847.44 ( 0.00%) 11149.43 * 2.78%* 12896.71 * 18.89%*
Hmean send-4096 13436.19 ( 0.00%) 13614.09 ( 1.32%) 15041.09 * 11.94%*
Hmean send-8192 22624.49 ( 0.00%) 23265.32 * 2.83%* 24534.96 * 8.44%*
Hmean send-16384 34441.87 ( 0.00%) 36457.15 * 5.85%* 35986.21 * 4.48%*
Note that this benefit is not universal to all wakeups, it only applies
to the case where the waker often spins on p->on_rq.
The impact can be seen from a "perf sched latency" report generated from
a single iteration of one packet size:
-----------------------------------------------------------------------------------------------------------------
Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |
-----------------------------------------------------------------------------------------------------------------
vanilla
netperf:4337 | 21709.193 ms | 2932 | avg: 0.002 ms | max: 0.041 ms | max at: 112.154512 s
netserver:4338 | 14629.459 ms | 5146990 | avg: 0.001 ms | max: 1615.864 ms | max at: 140.134496 s
localwakelist-v1r2
netperf:4339 | 29789.717 ms | 2460 | avg: 0.002 ms | max: 0.059 ms | max at: 138.205389 s
netserver:4340 | 18858.767 ms | 7279005 | avg: 0.001 ms | max: 0.362 ms | max at: 135.709683 s
-----------------------------------------------------------------------------------------------------------------
Note that the average wakeup delay is quite small on both the vanilla
kernel and with the two patches applied. However, there are significant
outliers with the vanilla kernel with the maximum one measured as 1615
milliseconds with a vanilla kernel but never worse than 0.362 ms with
both patches applied and a much higher rate of context switching.
Similarly a separate profile of cycles showed that 2.83% of all cycles
were spent in try_to_wake_up() with almost half of the cycles spent
on spinning on p->on_rq. With the two patches, the percentage of cycles
spent in try_to_wake_up() drops to 1.13%
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: valentin.schneider@arm.com
Cc: Hillf Danton <hdanton@sina.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/20200524202956.27665-3-mgorman@techsingularity.net
Both Rik and Mel reported seeing ttwu() spend significant time on:
smp_cond_load_acquire(&p->on_cpu, !VAL);
Attempt to avoid this by queueing the wakeup on the CPU that owns the
p->on_cpu value. This will then allow the ttwu() to complete without
further waiting.
Since we run schedule() with interrupts disabled, the IPI is
guaranteed to happen after p->on_cpu is cleared, this is what makes it
safe to queue early.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jirka Hladky <jhladky@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: valentin.schneider@arm.com
Cc: Hillf Danton <hdanton@sina.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/20200524202956.27665-2-mgorman@techsingularity.net
When users write some huge number into cpu.cfs_quota_us or
cpu.rt_runtime_us, overflow might happen during to_ratio() shifts of
schedulable checks.
to_ratio() could be altered to avoid unnecessary internal overflow, but
min_cfs_quota_period is less than 1 << BW_SHIFT, so a cutoff would still
be needed. Set a cap MAX_BW for cfs_quota_us and rt_runtime_us to
prevent overflow.
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/20200425105248.60093-1-changhuaixin@linux.alibaba.com
There is nothing architecture-specific about scs_overflow_check() as
it's just a trivial wrapper around scs_corrupted().
For parity with task_stack_end_corrupted(), rename scs_corrupted() to
task_scs_end_corrupted() and call it from schedule_debug() when
CONFIG_SCHED_STACK_END_CHECK_is enabled, which better reflects its
purpose as a debug feature to catch inadvertent overflow of the SCS.
Finally, remove the unused scs_overflow_check() function entirely.
This has absolutely no impact on architectures that do not support SCS
(currently arm64 only).
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
This change adds generic support for Clang's Shadow Call Stack,
which uses a shadow stack to protect return addresses from being
overwritten by an attacker. Details are available here:
https://clang.llvm.org/docs/ShadowCallStack.html
Note that security guarantees in the kernel differ from the ones
documented for user space. The kernel must store addresses of
shadow stacks in memory, which means an attacker capable reading
and writing arbitrary memory may be able to locate them and hijack
control flow by modifying the stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
[will: Numerous cosmetic changes]
Signed-off-by: Will Deacon <will@kernel.org>
Now that the scheduler IPI is trivial and simple again there is no point to
have the little function out of line. This simplifies the effort of
constraining the instrumentation nicely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134058.453581595@linutronix.de
The scheduler IPI has grown weird and wonderful over the years, time
for spring cleaning.
Move all the non-trivial stuff out of it and into a regular smp function
call IPI. This then reduces the schedule_ipi() to most of it's former NOP
glory and ensures to keep the interrupt vector lean and mean.
Aside of that avoiding the full irq_enter() in the x86 IPI implementation
is incorrect as scheduler_ipi() can be instrumented. To work around that
scheduler_ipi() had an irq_enter/exit() hack when heavy work was
pending. This is gone now.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134058.361859938@linutronix.de
Currently root_task_group.shares and cfs_bandwidth are initialized for
each online cpu, which not necessary.
Let's take it out to do it only once.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200423214443.29994-1-richard.weiyang@gmail.com
In the CPU-offline process, it calls mmdrop() after idle entry and the
subsequent call to cpuhp_report_idle_dead(). Once execution passes the
call to rcu_report_dead(), RCU is ignoring the CPU, which results in
lockdep complaining when mmdrop() uses RCU from either memcg or
debugobjects below.
Fix it by cleaning up the active_mm state from BP instead. Every arch
which has CONFIG_HOTPLUG_CPU should have already called idle_task_exit()
from AP. The only exception is parisc because it switches them to
&init_mm unconditionally (see smp_boot_one_cpu() and smp_cpu_init()),
but the patch will still work there because it calls mmgrab(&init_mm) in
smp_cpu_init() and then should call mmdrop(&init_mm) in finish_cpu().
WARNING: suspicious RCU usage
-----------------------------
kernel/workqueue.c:710 RCU or wq_pool_mutex should be held!
other info that might help us debug this:
RCU used illegally from offline CPU!
Call Trace:
dump_stack+0xf4/0x164 (unreliable)
lockdep_rcu_suspicious+0x140/0x164
get_work_pool+0x110/0x150
__queue_work+0x1bc/0xca0
queue_work_on+0x114/0x120
css_release+0x9c/0xc0
percpu_ref_put_many+0x204/0x230
free_pcp_prepare+0x264/0x570
free_unref_page+0x38/0xf0
__mmdrop+0x21c/0x2c0
idle_task_exit+0x170/0x1b0
pnv_smp_cpu_kill_self+0x38/0x2e0
cpu_die+0x48/0x64
arch_cpu_idle_dead+0x30/0x50
do_idle+0x2f4/0x470
cpu_startup_entry+0x38/0x40
start_secondary+0x7a8/0xa80
start_secondary_resume+0x10/0x14
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Link: https://lkml.kernel.org/r/20200401214033.8448-1-cai@lca.pw
Introduce a new function put_prev_task_balance() to do the balance
when necessary, and then put previous task back to the run queue.
This function is extracted from pick_next_task() to prepare for
future usage by other type of task picking logic.
No functional change.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/5a99860cf66293db58a397d6248bcb2eee326776.1587464698.git.yu.c.chen@intel.com
Pull in Christoph Hellwig's series that changes the sysctl's ->proc_handler
methods to take kernel pointers instead. It gets rid of the set_fs address
space overrides used by BPF. As per discussion, pull in the feature branch
into bpf-next as it relates to BPF sysctl progs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200427071508.GV23230@ZenIV.linux.org.uk/T/
A running task's state can be sampled in a consistent manner (for example,
for diagnostic purposes) simply by invoking smp_call_function_single()
on its CPU, which may be obtained using task_cpu(), then having the
IPI handler verify that the desired task is in fact still running.
However, if the task is not running, this sampling can in theory be done
immediately and directly. In practice, the task might start running at
any time, including during the sampling period. Gaining a consistent
sample of a not-running task therefore requires that something be done
to lock down the target task's state.
This commit therefore adds a try_invoke_on_locked_down_task() function
that invokes a specified function if the specified task can be locked
down, returning true if successful and if the specified function returns
true. Otherwise this function simply returns false. Given that the
function passed to try_invoke_on_nonrunning_task() might be invoked with
a runqueue lock held, that function had better be quite lightweight.
The function is passed the target task's task_struct pointer and the
argument passed to try_invoke_on_locked_down_task(), allowing easy access
to task state and to a location for further variables to be passed in
and out.
Note that the specified function will be called even if the specified
task is currently running. The function can use ->on_rq and task_curr()
to quickly and easily determine the task's state, and can return false
if this state is not to the function's liking. The caller of the
try_invoke_on_locked_down_task() would then see the false return value,
and could take appropriate action, for example, trying again later or
sending an IPI if matters are more urgent.
It is expected that use cases such as the RCU CPU stall warning code will
simply return false if the task is currently running. However, there are
use cases involving nohz_full CPUs where the specified function might
instead fall back to an alternative sampling scheme that relies on heavier
synchronization (such as memory barriers) in the target task.
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
[ paulmck: Apply feedback from Peter Zijlstra and Steven Rostedt. ]
[ paulmck: Invoke if running to handle feedback from Mathieu Desnoyers. ]
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Instead of having all the sysctl handlers deal with user pointers, which
is rather hairy in terms of the BPF interaction, copy the input to and
from userspace in common code. This also means that the strings are
always NUL-terminated by the common code, making the API a little bit
safer.
As most handler just pass through the data to one of the common handlers
a lot of the changes are mechnical.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
uclamp_fork() resets the uclamp values to their default when the
reset-on-fork flag is set. It also checks whether the task has a RT
policy, and sets its uclamp.min to 1024 accordingly. However, during
reset-on-fork, the task's policy is lowered to SCHED_NORMAL right after,
hence leading to an erroneous uclamp.min setting for the new task if it
was forked from RT.
Fix this by removing the unnecessary check on rt_task() in
uclamp_fork() as this doesn't make sense if the reset-on-fork flag is
set.
Fixes: 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks")
Reported-by: Chitti Babu Theegala <ctheegal@codeaurora.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20200416085956.217587-1-qperret@google.com
The following commit:
5e83eafbfd ("sched/fair: Remove the rq->cpu_load[] update code")
eliminated the last use case for rq->last_load_update_tick, so remove
the field as well.
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1584710495-308969-1-git-send-email-vincent.donnefort@arm.com
The kernel test robot triggered a warning with the following race:
task-ctx A interrupt-ctx B
worker
-> process_one_work()
-> work_item()
-> schedule();
-> sched_submit_work()
-> wq_worker_sleeping()
-> ->sleeping = 1
atomic_dec_and_test(nr_running)
__schedule(); *interrupt*
async_page_fault()
-> local_irq_enable();
-> schedule();
-> sched_submit_work()
-> wq_worker_sleeping()
-> if (WARN_ON(->sleeping)) return
-> __schedule()
-> sched_update_worker()
-> wq_worker_running()
-> atomic_inc(nr_running);
-> ->sleeping = 0;
-> sched_update_worker()
-> wq_worker_running()
if (!->sleeping) return
In this context the warning is pointless everything is fine.
An interrupt before wq_worker_sleeping() will perform the ->sleeping
assignment (0 -> 1 > 0) twice.
An interrupt after wq_worker_sleeping() will trigger the warning and
nr_running will be decremented (by A) and incremented once (only by B, A
will skip it). This is the case until the ->sleeping is zeroed again in
wq_worker_running().
Remove the WARN statement because this condition may happen. Document
that preemption around wq_worker_sleeping() needs to be disabled to
protect ->sleeping and not just as an optimisation.
Fixes: 6d25be5782 ("sched/core, workqueues: Distangle worker accounting from rq lock")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20200327074308.GY11705@shao2-debian
sched/core.c uses update_avg() for rq->avg_idle and sched/fair.c uses an
open-coded version (with the exact same decay factor) for
rq->avg_scan_cost. On top of that, select_idle_cpu() expects to be able to
compare these two fields.
The only difference between the two is that rq->avg_scan_cost is computed
using a pure division rather than a shift. Turns out it actually matters,
first of all because the shifted value can be negative, and the standard
has this to say about it:
"""
The result of E1 >> E2 is E1 right-shifted E2 bit positions. [...] If E1
has a signed type and a negative value, the resulting value is
implementation-defined.
"""
Not only this, but (arithmetic) right shifting a negative value (using 2's
complement) is *not* equivalent to dividing it by the corresponding power
of 2. Let's look at a few examples:
-4 -> 0xF..FC
-4 >> 3 -> 0xF..FF == -1 != -4 / 8
-8 -> 0xF..F8
-8 >> 3 -> 0xF..FF == -1 == -8 / 8
-9 -> 0xF..F7
-9 >> 3 -> 0xF..FE == -2 != -9 / 8
Make update_avg() use a division, and export it to the private scheduler
header to reuse it where relevant. Note that this still lets compilers use
a shift here, but should prevent any unwanted surprise. The disassembly of
select_idle_cpu() remains unchanged on arm64, and ttwu_do_wakeup() gains 2
instructions; the diff sort of looks like this:
- sub x1, x1, x0
+ subs x1, x1, x0 // set condition codes
+ add x0, x1, #0x7
+ csel x0, x0, x1, mi // x0 = x1 < 0 ? x0 : x1
add x0, x3, x0, asr #3
which does the right thing (i.e. gives us the expected result while still
using an arithmetic shift)
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200330090127.16294-1-valentin.schneider@arm.com
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low level
functions cpu_up/down() are now confined to the core code and not
longer accessible from random code.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B9VQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodCyD/0WFYAe7LkOfNjkbLa0IeuyLjF9rnCi
ilcSXMLpaVwwoQvm7MopwkXUDdmEIyeJ0B641j3mC3AKCRap4+O36H2IEg2byrj7
twOvQNCfxpVVmCCD11FTH9aQa74LEB6AikTgjevhrRWj6eHsal7c2Ak26AzCgrt+
0eEkOAOWJbLAlbIiPdHlCZ3TMldcs3gg+lRSYd5QCGQVkZFnwpXzyOvpyJEUGGbb
R/JuvwJoLhRMiYAJDILoQQQg/J07ODuivse/R8PWaH2djkn+2NyRGrD794PhyyOg
QoTU0ZrYD3Z48ACXv+N3jLM7wXMcFzjYtr1vW1E3O/YGA7GVIC6XHGbMQ7tEihY0
ajtwq8DcnpKtuouviYnf7NuKgqdmJXkaZjz3Gms6n8nLXqqSVwuQELWV2CXkxNe6
9kgnnKK+xXMOGI4TUhN8bejvkXqRCmKMeQJcWyf+7RA9UIhAJw5o7WGo8gXfQWUx
tazCqDy/inYjqGxckW615fhi2zHfemlYTbSzIGOuMB1TEPKFcrgYAii/VMsYHQVZ
5amkYUXGQ5brlCOzOn38lzp5OkALBnFzD7xgvOcQgWT3ynVpdqADfBytXiEEHh4J
KSkSgSSRcS58397nIxnDcJgJouHLvAWYyPZ4UC6mfynuQIic31qMHGVqwdbEKMY3
4M5dGgqIfOBgYw==
=jwCg
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core SMP updates from Thomas Gleixner:
"CPU (hotplug) updates:
- Support for locked CSD objects in smp_call_function_single_async()
which allows to simplify callsites in the scheduler core and MIPS
- Treewide consolidation of CPU hotplug functions which ensures the
consistency between the sysfs interface and kernel state. The low
level functions cpu_up/down() are now confined to the core code and
not longer accessible from random code"
* tag 'smp-core-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
cpu/hotplug: Ignore pm_wakeup_pending() for disable_nonboot_cpus()
cpu/hotplug: Hide cpu_up/down()
cpu/hotplug: Move bringup of secondary CPUs out of smp_init()
torture: Replace cpu_up/down() with add/remove_cpu()
firmware: psci: Replace cpu_up/down() with add/remove_cpu()
xen/cpuhotplug: Replace cpu_up/down() with device_online/offline()
parisc: Replace cpu_up/down() with add/remove_cpu()
sparc: Replace cpu_up/down() with add/remove_cpu()
powerpc: Replace cpu_up/down() with add/remove_cpu()
x86/smp: Replace cpu_up/down() with add/remove_cpu()
arm64: hibernate: Use bringup_hibernate_cpu()
cpu/hotplug: Provide bringup_hibernate_cpu()
arm64: Use reboot_cpu instead of hardconding it to 0
arm64: Don't use disable_nonboot_cpus()
ARM: Use reboot_cpu instead of hardcoding it to 0
ARM: Don't use disable_nonboot_cpus()
ia64: Replace cpu_down() with smp_shutdown_nonboot_cpus()
cpu/hotplug: Create a new function to shutdown nonboot cpus
cpu/hotplug: Add new {add,remove}_cpu() functions
sched/core: Remove rq.hrtick_csd_pending
...
For simplicity, cpu pressure is defined as having more than one
runnable task on a given CPU. This works on the system-level, but it
has limitations in a cgrouped reality: When cpu.max is in use, it
doesn't capture the time in which a task is not executing on the CPU
due to throttling. Likewise, it doesn't capture the time in which a
competing cgroup is occupying the CPU - meaning it only reflects
cgroup-internal competitive pressure, not outside pressure.
Enable tracking of currently executing tasks, and then change the
definition of cpu pressure in a cgroup from
NR_RUNNING > 1
to
NR_RUNNING > ON_CPU
which will capture the effects of cpu.max as well as competition from
outside the cgroup.
After this patch, a cgroup running `stress -c 1` with a cpu.max
setting of 5000 10000 shows ~50% continuous CPU pressure.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200316191333.115523-2-hannes@cmpxchg.org
Currently, when updating the affinity of tasks via either cpusets.cpus,
or, sched_setaffinity(); tasks not currently running within the newly
specified mask will be arbitrarily assigned to the first CPU within the
mask.
This (particularly in the case that we are restricting masks) can
result in many tasks being assigned to the first CPUs of their new
masks.
This:
1) Can induce scheduling delays while the load-balancer has a chance to
spread them between their new CPUs.
2) Can antogonize a poor load-balancer behavior where it has a
difficult time recognizing that a cross-socket imbalance has been
forced by an affinity mask.
This change adds a new cpumask interface to allow iterated calls to
distribute within the intersection of the provided masks.
The cases that this mainly affects are:
- modifying cpuset.cpus
- when tasks join a cpuset
- when modifying a task's affinity via sched_setaffinity(2)
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Tested-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lkml.kernel.org/r/20200311010113.136465-1-joshdon@google.com
drivers/base/arch_topology.c is only built if CONFIG_GENERIC_ARCH_TOPOLOGY=y,
resulting in such build failures:
cpufreq_cooling.c:(.text+0x1e7): undefined reference to `arch_set_thermal_pressure'
Move it to sched/core.c instead, and keep it enabled on x86 despite
us not having a arch_scale_thermal_pressure() facility there, to
build-test this thing.
Cc: Thara Gopinath <thara.gopinath@linaro.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now smp_call_function_single_async() provides the protection that
we'll return with -EBUSY if the csd object is still pending, then we
don't need the rq.hrtick_csd_pending any more.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20191216213125.9536-4-peterx@redhat.com
Thermal pressure follows pelt signals which means the decay period for
thermal pressure is the default pelt decay period. Depending on SoC
characteristics and thermal activity, it might be beneficial to decay
thermal pressure slower, but still in-tune with the pelt signals. One way
to achieve this is to provide a command line parameter to set a decay
shift parameter to an integer between 0 and 10.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-10-thara.gopinath@linaro.org
Introduce support in scheduler periodic tick and other CFS bookkeeping
APIs to trigger the process of computing average thermal pressure for a
CPU. Also consider avg_thermal.load_avg in others_have_blocked which
allows for decay of pelt signals.
Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200222005213.3873-7-thara.gopinath@linaro.org
Now that runnable_load_avg is no more used, we can remove it to make
space for a new signal.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: "Dietmar Eggemann <dietmar.eggemann@arm.com>"
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Link: https://lore.kernel.org/r/20200224095223.13361-8-mgorman@techsingularity.net
The following XFS commit:
8ab39f11d9 ("xfs: prevent CIL push holdoff in log recovery")
changed the logic from using bound workqueues to using unbound
workqueues. Functionally this makes sense but it was observed at the
time that the dbench performance dropped quite a lot and CPU migrations
were increased.
The current pattern of the task migration is straight-forward. With XFS,
an IO issuer delegates work to xlog_cil_push_work ()on an unbound kworker.
This runs on a nearby CPU and on completion, dbench wakes up on its old CPU
as it is still idle and no migration occurs. dbench then queues the real
IO on the blk_mq_requeue_work() work item which runs on a bound kworker
which is forced to run on the same CPU as dbench. When IO completes,
the bound kworker wakes dbench but as the kworker is a bound but,
real task, the CPU is not considered idle and dbench gets migrated by
select_idle_sibling() to a new CPU. dbench may ping-pong between two CPUs
for a while but ultimately it starts a round-robin of all CPUs sharing
the same LLC. High-frequency migration on each IO completion has poor
performance overall. It has negative implications both in commication
costs and power management. mpstat confirmed that at low thread counts
that all CPUs sharing an LLC has low level of activity.
Note that even if the CIL patch was reverted, there still would
be migrations but the impact is less noticeable. It turns out that
individually the scheduler, XFS, blk-mq and workqueues all made sensible
decisions but in combination, the overall effect was sub-optimal.
This patch special cases the IO issue/completion pattern and allows
a bound kworker waker and a task wakee to stack on the same CPU if
there is a strong chance they are directly related. The expectation
is that the kworker is likely going back to sleep shortly. This is not
guaranteed as the IO could be queued asynchronously but there is a very
strong relationship between the task and kworker in this case that would
justify stacking on the same CPU instead of migrating. There should be
few concerns about kworker starvation given that the special casing is
only when the kworker is the waker.
DBench on XFS
MMTests config: io-dbench4-async modified to run on a fresh XFS filesystem
UMA machine with 8 cores sharing LLC
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack
Amean 1 22.63 ( 0.00%) 20.54 * 9.23%*
Amean 2 25.56 ( 0.00%) 23.40 * 8.44%*
Amean 4 28.63 ( 0.00%) 27.85 * 2.70%*
Amean 8 37.66 ( 0.00%) 37.68 ( -0.05%)
Amean 64 469.47 ( 0.00%) 468.26 ( 0.26%)
Stddev 1 1.00 ( 0.00%) 0.72 ( 28.12%)
Stddev 2 1.62 ( 0.00%) 1.97 ( -21.54%)
Stddev 4 2.53 ( 0.00%) 3.58 ( -41.19%)
Stddev 8 5.30 ( 0.00%) 5.20 ( 1.92%)
Stddev 64 86.36 ( 0.00%) 94.53 ( -9.46%)
NUMA machine, 48 CPUs total, 24 CPUs share cache
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Amean 1 58.69 ( 0.00%) 30.21 * 48.53%*
Amean 2 60.90 ( 0.00%) 35.29 * 42.05%*
Amean 4 66.77 ( 0.00%) 46.55 * 30.28%*
Amean 8 81.41 ( 0.00%) 68.46 * 15.91%*
Amean 16 113.29 ( 0.00%) 107.79 * 4.85%*
Amean 32 199.10 ( 0.00%) 198.22 * 0.44%*
Amean 64 478.99 ( 0.00%) 477.06 * 0.40%*
Amean 128 1345.26 ( 0.00%) 1372.64 * -2.04%*
Stddev 1 2.64 ( 0.00%) 4.17 ( -58.08%)
Stddev 2 4.35 ( 0.00%) 5.38 ( -23.73%)
Stddev 4 6.77 ( 0.00%) 6.56 ( 3.00%)
Stddev 8 11.61 ( 0.00%) 10.91 ( 6.04%)
Stddev 16 18.63 ( 0.00%) 19.19 ( -3.01%)
Stddev 32 38.71 ( 0.00%) 38.30 ( 1.06%)
Stddev 64 100.28 ( 0.00%) 91.24 ( 9.02%)
Stddev 128 186.87 ( 0.00%) 160.34 ( 14.20%)
Dbench has been modified to report the time to complete a single "load
file". This is a more meaningful metric for dbench that a throughput
metric as the benchmark makes many different system calls that are not
throughput-related
Patch shows a 9.23% and 48.53% reduction in the time to process a load
file with the difference partially explained by the number of CPUs sharing
a LLC. In a separate run, task migrations were almost eliminated by the
patch for low client counts. In case people have issue with the metric
used for the benchmark, this is a comparison of the throughputs as
reported by dbench on the NUMA machine.
dbench4 Throughput (misleading but traditional)
5.5.0-rc7 5.5.0-rc7
tipsched-20200124 kworkerstack-v1r2
Hmean 1 321.41 ( 0.00%) 617.82 * 92.22%*
Hmean 2 622.87 ( 0.00%) 1066.80 * 71.27%*
Hmean 4 1134.56 ( 0.00%) 1623.74 * 43.12%*
Hmean 8 1869.96 ( 0.00%) 2212.67 * 18.33%*
Hmean 16 2673.11 ( 0.00%) 2806.13 * 4.98%*
Hmean 32 3032.74 ( 0.00%) 3039.54 ( 0.22%)
Hmean 64 2514.25 ( 0.00%) 2498.96 * -0.61%*
Hmean 128 1778.49 ( 0.00%) 1746.05 * -1.82%*
Note that this is somewhat specific to XFS and ext4 shows no performance
difference as it does not rely on kworkers in the same way. No major
problem was observed running other workloads on different machines although
not all tests have completed yet.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200128154006.GD3466@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.
The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.
Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.
1. FREQUENCY INVARIANCE: MOTIVATION
* Without it, a task looks larger if the CPU runs slower
2. PECULIARITIES OF X86
* freq invariance accounting requires knowing the ratio freq_curr/freq_max
2.1 CURRENT FREQUENCY
* Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
2.2 MAX FREQUENCY
* It varies with time (turbo). As an approximation, we set it to a
constant, i.e. 4-cores turbo frequency.
3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
* The invariant schedutil's formula has no feedback loop and reacts faster
to utilization changes
4. KNOWN LIMITATIONS
* In some cases tasks can't reach max util despite how hard they try
5. PERFORMANCE TESTING
5.1 MACHINES
* Skylake, Broadwell, Haswell
5.2 SETUP
* baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
active cores turbo w/ invariant schedutil, and intel_pstate/powersave
5.3 BENCHMARK RESULTS
5.3.1 NEUTRAL BENCHMARKS
* NAS Parallel Benchmark (HPC), hackbench
5.3.2 NON-NEUTRAL BENCHMARKS
* tbench (10-30% better), kernbench (10-15% better),
shell-intensive-scripts (30-50% better)
* no regressions
5.3.3 SELECTION OF DETAILED RESULTS
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
* dbench (5% worse on one machine), kernbench (3% worse),
tbench (5-10% better), shell-intensive-scripts (10-40% better)
6. MICROARCH'ES ADDRESSED HERE
* Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
etc have different MSRs semantic for querying turbo levels)
7. REFERENCES
* MMTests performance testing framework, github.com/gormanm/mmtests
+-------------------------------------------------------------------------+
| 1. FREQUENCY INVARIANCE: MOTIVATION
+-------------------------------------------------------------------------+
For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.
[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)
+-------------------------------------------------------------------------+
| 2. PECULIARITIES OF X86
+-------------------------------------------------------------------------+
Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.
2.1 CURRENT FREQUENCY
====================
Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.
Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.
2.2 MAX FREQUENCY
=================
Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.
The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:
* 1-core (1C) turbo frequency (the fastest turbo state available)
* around base frequency (a.k.a. max P-state)
* something in between, such as 4C turbo
To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:
freq_max set to | effect on DVFS
--------------------+------------------
1C turbo | power efficiency (lower freq choices)
base freq | performance (higher util_avg, higher freq requests)
4C turbo | a bit of both
4C turbo proves to be a good compromise in a number of benchmarks (see below).
+-------------------------------------------------------------------------+
| 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
+-------------------------------------------------------------------------+
Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from
freq_next = 1.25 * freq_curr * util [non-invariant util signal]
to
freq_next = 1.25 * freq_max * util [invariant util signal]
where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.
Compare it to the update formula of intel_pstate/powersave:
freq_next = 1.25 * freq_max * Busy%
where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.
Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.
+-------------------------------------------------------------------------+
| 4. KNOWN LIMITATIONS
+-------------------------------------------------------------------------+
It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).
If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.
While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.
[Lelli-2018]
https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/
+-------------------------------------------------------------------------+
| 5. PERFORMANCE TESTING
+-------------------------------------------------------------------------+
5.1 MACHINES
============
We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.
* 8x-SKYLAKE-UMA:
Single socket E3-1240 v5, Skylake 4 cores/8 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 800 |********
BASE 3500 |***********************************
4C 3700 |*************************************
3C 3800 |**************************************
2C 3900 |***************************************
1C 3900 |***************************************
* 80x-BROADWELL-NUMA:
Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2200 |**********************
8C 2900 |*****************************
7C 3000 |******************************
6C 3100 |*******************************
5C 3200 |********************************
4C 3300 |*********************************
3C 3400 |**********************************
2C 3600 |************************************
1C 3600 |************************************
* 48x-HASWELL-NUMA
Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2300 |***********************
12C 2600 |**************************
11C 2600 |**************************
10C 2600 |**************************
9C 2600 |**************************
8C 2600 |**************************
7C 2600 |**************************
6C 2600 |**************************
5C 2700 |***************************
4C 2800 |****************************
3C 2900 |*****************************
2C 3100 |*******************************
1C 3100 |*******************************
5.2 SETUP
=========
* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
on all machines), plus one more value closer to base_freq but still in the
turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
with active intel_pstate on this machine use that.
This gives, in terms of combinations tested on each machine:
* 8x-SKYLAKE-UMA
* Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
* intel_pstate active + powersave + HWP
* invariant schedutil, freq_max = 1C turbo
* invariant schedutil, freq_max = 3C turbo
* invariant schedutil, freq_max = 4C turbo
* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
* [same as 8x-SKYLAKE-UMA, but no HWP capable]
* invariant schedutil, freq_max = 8C turbo
(which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")
5.3 BENCHMARK RESULTS
=====================
5.3.1 NEUTRAL BENCHMARKS
------------------------
Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:
* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)
5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------
What follow are summary tables where each benchmark result is given a score.
* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
means a score of 1.00.
* The results in the score ratio are the geometric means of results running
the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
... number of processes; for pgbench: varying the number of clients, and so
on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
operations/second), the subsequent three show lower-is-better kind of tests
(i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
entire unit tests suite of the Git SCM and measuring how long it takes. We
take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
columns show invariant schedutil for different values of freq_max. 4C turbo
is circled as it's the value we've chosen for the final implementation.
80x-BROADWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.14 ~ ~ | 1.11 | 1.14
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07
netperf-tcp ~ 1.03 ~ | 1.01 | 1.02
tbench4 1.57 1.18 1.22 | 1.30 | 1.56
+------+
8x-SKYLAKE-UMA (comparison ratio; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.30 1.14 1.14 | 1.16 |
+------+
48x-HASWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.15 ~ ~ | 1.06 | 1.16
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02
netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01
tbench4 1.50 1.05 1.13 | 1.13 | 1.25
+------+
In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.
If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.
80x-BROADWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 1.23 0.95 0.95 | 0.95 | 0.95
kernbench 0.93 0.83 0.83 | 0.83 | 0.82
gitsource 0.98 0.49 0.49 | 0.49 | 0.48
+------+
8x-SKYLAKE-UMA (comparison ratio; lower is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
dbench4 ~ ~ ~ | ~ |
kernbench ~ ~ ~ | ~ |
gitsource 0.92 0.55 0.55 | 0.55 |
+------+
48x-HASWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 ~ ~ ~ | ~ | ~
kernbench 0.94 0.90 0.89 | 0.90 | 0.90
gitsource 0.97 0.69 0.69 | 0.69 | 0.69
+------+
dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.
On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).
The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.
5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------
Machine : 48x-HASWELL-NUMA
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%)
Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%)
Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%)
Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%)
Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%)
Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%)
Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%)
Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%)
Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%)
Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%)
Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%)
Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%)
Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%)
Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%)
Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%)
Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%)
Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%)
This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.
The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.
Machine : 80x-BROADWELL-NUMA
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%)
Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%)
Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%)
Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%)
Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%)
Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%)
Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%)
Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%)
Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%)
Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%)
Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%)
Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%)
Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%)
Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%)
Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%)
The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.
Machine : 8x-SKYLAKE-UMA
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%)
5.2.0 3C-turbo 5.2.0 4C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%)
In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------
The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.
turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).
80x-BROADWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84
pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54
dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94
netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95
netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20
tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07
kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10
gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70
+--------+
8x-SKYLAKE-UMA (power consumption, watts)
+--------+
BASELINE I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 |
pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 |
dbench4 27.28 27.37 27.49 27.41 | 27.38 |
netperf-udp 22.33 22.41 22.36 22.35 | 22.36 |
netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 |
tbench4 41.13 45.61 43.10 43.33 | 43.56 |
kernbench 42.56 42.63 43.01 43.01 | 43.01 |
gitsource 13.32 13.69 17.33 17.30 | 17.35 |
+--------+
48x-HASWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86
pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31
dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79
netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52
netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95
tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22
kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04
gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23
+--------+
A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).
80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08
pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97
dbench4 1.24 0.94 0.95 | 0.94 | 0.92
netperf-udp ~ 1.02 1.02 | ~ | 1.02
netperf-tcp ~ 1.02 ~ | ~ | 1.02
tbench4 1.26 1.10 1.06 | 1.12 | 1.26
kernbench 0.98 0.97 0.97 | 0.97 | 0.98
gitsource ~ 1.11 1.11 | 1.11 | 1.13
+------+
8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw 0.95 0.97 0.96 | 0.96 |
dbench4 ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.17 1.09 1.08 | 1.10 |
kernbench ~ ~ ~ | ~ |
gitsource 1.06 1.40 1.40 | 1.40 |
+------+
48x-HASWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11
pgbench-rw ~ 0.86 ~ | ~ | 0.86
dbench4 ~ 1.02 1.02 | 1.02 | ~
netperf-udp ~ 0.97 1.03 | 1.02 | ~
netperf-tcp 0.96 ~ ~ | ~ | ~
tbench4 1.24 ~ 1.06 | 1.05 | 1.11
kernbench 0.97 0.97 0.98 | 0.97 | 0.96
gitsource 1.03 1.33 1.32 | 1.32 | 1.33
+------+
These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.
+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+
The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.
Subsequent patches will address:
* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont
+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+
Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:
db-pgbench-timed-ro-small-xfs
db-pgbench-timed-rw-small-xfs
io-dbench4-async-xfs
network-netperf-unbound
network-tbench
scheduler-unbound
workload-kerndevel-xfs
workload-shellscripts-xfs
hpc-nas-c-class-mpi-full-xfs
hpc-nas-c-class-omp-full
All those benchmarks are generally available on the web:
pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
When a running task is moved on a throttled task group and there is no
other task enqueued on the CPU, the task can keep running using 100% CPU
whatever the allocated bandwidth for the group and although its cfs rq is
throttled. Furthermore, the group entity of the cfs_rq and its parents are
not enqueued but only set as curr on their respective cfs_rqs.
We have the following sequence:
sched_move_task
-dequeue_task: dequeue task and group_entities.
-put_prev_task: put task and group entities.
-sched_change_group: move task to new group.
-enqueue_task: enqueue only task but not group entities because cfs_rq is
throttled.
-set_next_task : set task and group_entities as current sched_entity of
their cfs_rq.
Another impact is that the root cfs_rq runnable_load_avg at root rq stays
null because the group_entities are not enqueued. This situation will stay
the same until an "external" event triggers a reschedule. Let trigger it
immediately instead.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Ben Segall <bsegall@google.com>
Link: https://lkml.kernel.org/r/1579011236-31256-1-git-send-email-vincent.guittot@linaro.org
On a machine, CPU 0 is used for housekeeping, the other 39 CPUs in the
same socket are in nohz_full mode. We can observe huge time burn in the
loop for seaching nearest busy housekeeper cpu by ftrace.
2) | get_nohz_timer_target() {
2) 0.240 us | housekeeping_test_cpu();
2) 0.458 us | housekeeping_test_cpu();
...
2) 0.292 us | housekeeping_test_cpu();
2) 0.240 us | housekeeping_test_cpu();
2) 0.227 us | housekeeping_any_cpu();
2) + 43.460 us | }
This patch optimizes the searching logic by finding a nearest housekeeper
CPU in the housekeeping cpumask, it can minimize the worst searching time
from ~44us to < 10us in my testing. In addition, the last iterated busy
housekeeper can become a random candidate while current CPU is a better
fallback if it is a housekeeper.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/1578876627-11938-1-git-send-email-wanpengli@tencent.com
The check to ensure that the new written value into cpu.uclamp.{min,max}
is within range, [0:100], wasn't working because of the signed
comparison
7301 if (req.percent > UCLAMP_PERCENT_SCALE) {
7302 req.ret = -ERANGE;
7303 return req;
7304 }
# echo -1 > cpu.uclamp.min
# cat cpu.uclamp.min
42949671.96
Cast req.percent into u64 to force the comparison to be unsigned and
work as intended in capacity_from_percent().
# echo -1 > cpu.uclamp.min
sh: write error: Numerical result out of range
Fixes: 2480c09313 ("sched/uclamp: Extend CPU's cgroup controller")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20200114210947.14083-1-qais.yousef@arm.com
The way loadavg is tracked during nohz only pays attention to the load
upon entering nohz. This can be particularly noticeable if full nohz is
entered while non-idle, and then the cpu goes idle and stays that way for
a long time.
Use the remote tick to ensure that full nohz cpus report their deltas
within a reasonable time.
[ swood: Added changelog and removed recheck of stopped tick. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1578736419-14628-3-git-send-email-swood@redhat.com
This will be used in the next patch to get a loadavg update from
nohz cpus. The delta check is skipped because idle_sched_class
doesn't update se.exec_start.
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/1578736419-14628-2-git-send-email-swood@redhat.com
rq::uclamp is an array of struct uclamp_rq, make sure we clear the
whole thing.
Fixes: 69842cba9a ("sched/uclamp: Add CPU's clamp buckets refcountinga")
Signed-off-by: Li Guanglei <guanglei.li@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lkml.kernel.org/r/1577259844-12677-1-git-send-email-guangleix.li@gmail.com
When a new cgroup is created, the effective uclamp value wasn't updated
with a call to cpu_util_update_eff() that looks at the hierarchy and
update to the most restrictive values.
Fix it by ensuring to call cpu_util_update_eff() when a new cgroup
becomes online.
Without this change, the newly created cgroup uses the default
root_task_group uclamp values, which is 1024 for both uclamp_{min, max},
which will cause the rq to to be clamped to max, hence cause the
system to run at max frequency.
The problem was observed on Ubuntu server and was reproduced on Debian
and Buildroot rootfs.
By default, Ubuntu and Debian create a cpu controller cgroup hierarchy
and add all tasks to it - which creates enough noise to keep the rq
uclamp value at max most of the time. Imitating this behavior makes the
problem visible in Buildroot too which otherwise looks fine since it's a
minimal userspace.
Fixes: 0b60ba2dd3 ("sched/uclamp: Propagate parent clamps")
Reported-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Doug Smythies <dsmythies@telus.net>
Link: https://lore.kernel.org/lkml/000701d5b965$361b6c60$a2524520$@net/
Vincent pointed out recently that the canonical type for utilization
values is 'unsigned long'. Internally uclamp uses 'unsigned int' values for
cache optimization, but this doesn't have to be exported to its users.
Make the uclamp helpers that deal with utilization use and return unsigned
long values.
Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191211113851.24241-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit left behind an unused variable:
5443a0be61 ("sched: Use fair:prio_changed() instead of ad-hoc implementation") left behind an unused variable.
kernel/sched/core.c: In function 'set_user_nice':
kernel/sched/core.c:4507:16: warning: variable 'delta' set but not used
int old_prio, delta;
^~~~~
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 5443a0be61 ("sched: Use fair:prio_changed() instead of ad-hoc implementation")
Link: https://lkml.kernel.org/r/20191219140314.1252-1-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
set_user_nice() implements its own version of fair::prio_changed() and
therefore misses a specific optimization towards nohz_full CPUs that
avoid sending an resched IPI to a reniced task running alone. Use the
proper callback instead.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20191203160106.18806-3-frederic@kernel.org
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
Pull scheduler updates from Ingo Molnar:
"The biggest changes in this cycle were:
- Make kcpustat vtime aware (Frederic Weisbecker)
- Rework the CFS load_balance() logic (Vincent Guittot)
- Misc cleanups, smaller enhancements, fixes.
The load-balancing rework is the most intrusive change: it replaces
the old heuristics that have become less meaningful after the
introduction of the PELT metrics, with a grounds-up load-balancing
algorithm.
As such it's not really an iterative series, but replaces the old
load-balancing logic with the new one. We hope there are no
performance regressions left - but statistically it's highly probable
that there *is* going to be some workload that is hurting from these
chnages. If so then we'd prefer to have a look at that workload and
fix its scheduling, instead of reverting the changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits)
rackmeter: Use vtime aware kcpustat accessor
leds: Use all-in-one vtime aware kcpustat accessor
cpufreq: Use vtime aware kcpustat accessors for user time
procfs: Use all-in-one vtime aware kcpustat accessor
sched/vtime: Bring up complete kcpustat accessor
sched/cputime: Support other fields on kcpustat_field()
sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()
sched/fair: Add comments for group_type and balancing at SD_NUMA level
sched/fair: Fix rework of find_idlest_group()
sched/uclamp: Fix overzealous type replacement
sched/Kconfig: Fix spelling mistake in user-visible help text
sched/core: Further clarify sched_class::set_next_task()
sched/fair: Use mul_u32_u32()
sched/core: Simplify sched_class::pick_next_task()
sched/core: Optimize pick_next_task()
sched/core: Make pick_next_task_idle() more consistent
sched/fair: Better document newidle_balance()
leds: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM
cpufreq: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM
procfs: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl3WxNwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgps4kD/9SIDXhYhhE8fNqeAF7Uouu8fxgwnkY3hSI
43vJwCziiDxWWJH5mYW7/83VNOMZKHIbiYMnU6iEUsRQ/sG/wI0wEfAQZDHLzCKt
cko2q7zAC1/4rtoslwJ3q04hE2Ap/nb93ELZBVr7fOAuODBNFUp/vifAojvsMPKz
hNMNPq/vYg7c/iYMZKSBdtjE3tqceFNBjAVNMB9dHKQLeexEy4ve7AjBeawWsSi7
GesnQ5w5u5LqkMYwLslpv/oVjHiiFWgGnDAvBNvykQvVy+DfB54KSqMV11W1aqdU
l6L+ENfZasEvlk1yMAth2Foq4vlscm5MKEb6VdJhXWHHXtXkcBmz7RBqPmjSvXCY
wS5GZRw8oYtTcid0aQf+t/wgRNTDJsGsnsT32qto41No3Z7vlIDHUDxHZGTA+gEL
E8j9rDx6EXMTo3EFbC8XZcfsorhPJ1HKAyw1YFczHtYzJEQUR9jJe3f/Q9u6K2Vy
s/EhkVeHa/lEd7kb6mI+6lQjGe1FXl7AHauDuaaEfIOZA/xJB3Bad5Wjq1va1cUO
TX+37zjzFzJghhSIBGYq7G7iT4AMecPQgxHzCdCyYfW5S4Uur9tMmIElwVPI/Pjl
kDZ9gdg9lm6JifZ9Ab8QcGhuQQTF3frwX9VfgrVgcqyvm38AiYzVgL9ZJnxRS/Cy
ZfLNkACXqQ==
=YZ9s
-----END PGP SIGNATURE-----
Merge tag 'for-5.5/io_uring-20191121' of git://git.kernel.dk/linux-block
Pull io_uring updates from Jens Axboe:
"A lot of stuff has been going on this cycle, with improving the
support for networked IO (and hence unbounded request completion
times) being one of the major themes. There's been a set of fixes done
this week, I'll send those out as well once we're certain we're fully
happy with them.
This contains:
- Unification of the "normal" submit path and the SQPOLL path (Pavel)
- Support for sparse (and bigger) file sets, and updating of those
file sets without needing to unregister/register again.
- Independently sized CQ ring, instead of just making it always 2x
the SQ ring size. This makes it more flexible for networked
applications.
- Support for overflowed CQ ring, never dropping events but providing
backpressure on submits.
- Add support for absolute timeouts, not just relative ones.
- Support for generic cancellations. This divorces io_uring from
workqueues as well, which additionally gets us one step closer to
generic async system call support.
- With cancellations, we can support grabbing the process file table
as well, just like we do mm context. This allows support for system
calls that create file descriptors, like accept4() support that's
built on top of that.
- Support for io_uring tracing (Dmitrii)
- Support for linked timeouts. These abort an operation if it isn't
completed by the time noted in the linke timeout.
- Speedup tracking of poll requests
- Various cleanups making the coder easier to follow (Jackie, Pavel,
Bob, YueHaibing, me)
- Update MAINTAINERS with new io_uring list"
* tag 'for-5.5/io_uring-20191121' of git://git.kernel.dk/linux-block: (64 commits)
io_uring: make POLL_ADD/POLL_REMOVE scale better
io-wq: remove now redundant struct io_wq_nulls_list
io_uring: Fix getting file for non-fd opcodes
io_uring: introduce req_need_defer()
io_uring: clean up io_uring_cancel_files()
io-wq: ensure free/busy list browsing see all items
io-wq: ensure we have a stable view of ->cur_work for cancellations
io_wq: add get/put_work handlers to io_wq_create()
io_uring: check for validity of ->rings in teardown
io_uring: fix potential deadlock in io_poll_wake()
io_uring: use correct "is IO worker" helper
io_uring: fix -ENOENT issue with linked timer with short timeout
io_uring: don't do flush cancel under inflight_lock
io_uring: flag SQPOLL busy condition to userspace
io_uring: make ASYNC_CANCEL work with poll and timeout
io_uring: provide fallback request for OOM situations
io_uring: convert accept4() -ERESTARTSYS into -EINTR
io_uring: fix error clear of ->file_table in io_sqe_files_register()
io_uring: separate the io_free_req and io_free_req_find_next interface
io_uring: keep io_put_req only responsible for release and put req
...
Some uclamp helpers had their return type changed from 'unsigned int' to
'enum uclamp_id' by commit
0413d7f33e ("sched/uclamp: Always use 'enum uclamp_id' for clamp_id values")
but it happens that some do return a value in the [0, SCHED_CAPACITY_SCALE]
range, which should really be unsigned int. The affected helpers are
uclamp_none(), uclamp_rq_max_value() and uclamp_eff_value(). Fix those up.
Note that this doesn't lead to any obj diff using a relatively recent
aarch64 compiler (8.3-2019.03). The current code of e.g. uclamp_eff_value()
properly returns an 11 bit value (bits_per(1024)) and doesn't seem to do
anything funny. I'm still marking this as fixing the above commit to be on
the safe side.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: patrick.bellasi@matbug.net
Cc: qperret@google.com
Cc: surenb@google.com
Cc: tj@kernel.org
Fixes: 0413d7f33e ("sched/uclamp: Always use 'enum uclamp_id' for clamp_id values")
Link: https://lkml.kernel.org/r/20191115103908.27610-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
uclamp_update_active() should perform the update when
p->uclamp[clamp_id].active is true. But when the logic was inverted in
[1], the if condition wasn't inverted correctly too.
[1] https://lore.kernel.org/lkml/20190902073836.GO2369@hirez.programming.kicks-ass.net/
Reported-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Patrick Bellasi <patrick.bellasi@matbug.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: babbe170e0 ("sched/uclamp: Update CPU's refcount on TG's clamp changes")
Link: https://lkml.kernel.org/r/20191114211052.15116-1-qais.yousef@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While seemingly harmless, __sched_fork() does hrtimer_init(), which,
when DEBUG_OBJETS, can end up doing allocations.
This then results in the following lock order:
rq->lock
zone->lock.rlock
batched_entropy_u64.lock
Which in turn causes deadlocks when we do wakeups while holding that
batched_entropy lock -- as the random code does.
Solve this by moving __sched_fork() out from under rq->lock. This is
safe because nothing there relies on rq->lock, as also evident from the
other __sched_fork() callsite.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: bigeasy@linutronix.de
Cc: cl@linux.com
Cc: keescook@chromium.org
Cc: penberg@kernel.org
Cc: rientjes@google.com
Cc: thgarnie@google.com
Cc: tytso@mit.edu
Cc: will@kernel.org
Fixes: b7d5dc2107 ("random: add a spinlock_t to struct batched_entropy")
Link: https://lkml.kernel.org/r/20191001091837.GK4536@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ever since we moved the sched_class definitions into their own files,
the constant expression {fair,idle}_sched_class.pick_next_task() is
not in fact a compile time constant anymore and results in an indirect
call (barring LTO).
Fix that by exposing pick_next_task_{fair,idle}() directly, this gets
rid of the indirect call (and RETPOLINE) on the fast path.
Also remove the unlikely() from the idle case, it is in fact /the/ way
we select idle -- and that is a very common thing to do.
Performance for will-it-scale/sched_yield improves by 2% (as reported
by 0-day).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: juri.lelli@redhat.com
Cc: ktkhai@virtuozzo.com
Cc: mgorman@suse.de
Cc: qais.yousef@arm.com
Cc: qperret@google.com
Cc: rostedt@goodmis.org
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: https://lkml.kernel.org/r/20191108131909.603037345@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>