Commit Graph

481 Commits

Author SHA1 Message Date
Waiman Long
bc17f23778 mm: prevent derefencing NULL ptr in pfn_section_valid()
[ Upstream commit 82f0b6f041 ]

Commit 5ec8e8ea8b ("mm/sparsemem: fix race in accessing
memory_section->usage") changed pfn_section_valid() to add a READ_ONCE()
call around "ms->usage" to fix a race with section_deactivate() where
ms->usage can be cleared.  The READ_ONCE() call, by itself, is not enough
to prevent NULL pointer dereference.  We need to check its value before
dereferencing it.

Link: https://lkml.kernel.org/r/20240626001639.1350646-1-longman@redhat.com
Fixes: 5ec8e8ea8b ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-07-18 13:07:36 +02:00
Charan Teja Kalla
b448de2459 mm/sparsemem: fix race in accessing memory_section->usage
[ Upstream commit 5ec8e8ea8b ]

The below race is observed on a PFN which falls into the device memory
region with the system memory configuration where PFN's are such that
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL].  Since normal zone start and end
pfn contains the device memory PFN's as well, the compaction triggered
will try on the device memory PFN's too though they end up in NOP(because
pfn_to_online_page() returns NULL for ZONE_DEVICE memory sections).  When
from other core, the section mappings are being removed for the
ZONE_DEVICE region, that the PFN in question belongs to, on which
compaction is currently being operated is resulting into the kernel crash
with CONFIG_SPASEMEM_VMEMAP enabled.  The crash logs can be seen at [1].

compact_zone()			memunmap_pages
-------------			---------------
__pageblock_pfn_to_page
   ......
 (a)pfn_valid():
     valid_section()//return true
			      (b)__remove_pages()->
				  sparse_remove_section()->
				    section_deactivate():
				    [Free the array ms->usage and set
				     ms->usage = NULL]
     pfn_section_valid()
     [Access ms->usage which
     is NULL]

NOTE: From the above it can be said that the race is reduced to between
the pfn_valid()/pfn_section_valid() and the section deactivate with
SPASEMEM_VMEMAP enabled.

The commit b943f045a9af("mm/sparse: fix kernel crash with
pfn_section_valid check") tried to address the same problem by clearing
the SECTION_HAS_MEM_MAP with the expectation of valid_section() returns
false thus ms->usage is not accessed.

Fix this issue by the below steps:

a) Clear SECTION_HAS_MEM_MAP before freeing the ->usage.

b) RCU protected read side critical section will either return NULL
   when SECTION_HAS_MEM_MAP is cleared or can successfully access ->usage.

c) Free the ->usage with kfree_rcu() and set ms->usage = NULL.  No
   attempt will be made to access ->usage after this as the
   SECTION_HAS_MEM_MAP is cleared thus valid_section() return false.

Thanks to David/Pavan for their inputs on this patch.

[1] https://lore.kernel.org/linux-mm/994410bb-89aa-d987-1f50-f514903c55aa@quicinc.com/

On Snapdragon SoC, with the mentioned memory configuration of PFN's as
[ZONE_NORMAL ZONE_DEVICE ZONE_NORMAL], we are able to see bunch of
issues daily while testing on a device farm.

For this particular issue below is the log.  Though the below log is
not directly pointing to the pfn_section_valid(){ ms->usage;}, when we
loaded this dump on T32 lauterbach tool, it is pointing.

[  540.578056] Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000000
[  540.578068] Mem abort info:
[  540.578070]   ESR = 0x0000000096000005
[  540.578073]   EC = 0x25: DABT (current EL), IL = 32 bits
[  540.578077]   SET = 0, FnV = 0
[  540.578080]   EA = 0, S1PTW = 0
[  540.578082]   FSC = 0x05: level 1 translation fault
[  540.578085] Data abort info:
[  540.578086]   ISV = 0, ISS = 0x00000005
[  540.578088]   CM = 0, WnR = 0
[  540.579431] pstate: 82400005 (Nzcv daif +PAN -UAO +TCO -DIT -SSBSBTYPE=--)
[  540.579436] pc : __pageblock_pfn_to_page+0x6c/0x14c
[  540.579454] lr : compact_zone+0x994/0x1058
[  540.579460] sp : ffffffc03579b510
[  540.579463] x29: ffffffc03579b510 x28: 0000000000235800 x27:000000000000000c
[  540.579470] x26: 0000000000235c00 x25: 0000000000000068 x24:ffffffc03579b640
[  540.579477] x23: 0000000000000001 x22: ffffffc03579b660 x21:0000000000000000
[  540.579483] x20: 0000000000235bff x19: ffffffdebf7e3940 x18:ffffffdebf66d140
[  540.579489] x17: 00000000739ba063 x16: 00000000739ba063 x15:00000000009f4bff
[  540.579495] x14: 0000008000000000 x13: 0000000000000000 x12:0000000000000001
[  540.579501] x11: 0000000000000000 x10: 0000000000000000 x9 :ffffff897d2cd440
[  540.579507] x8 : 0000000000000000 x7 : 0000000000000000 x6 :ffffffc03579b5b4
[  540.579512] x5 : 0000000000027f25 x4 : ffffffc03579b5b8 x3 :0000000000000001
[  540.579518] x2 : ffffffdebf7e3940 x1 : 0000000000235c00 x0 :0000000000235800
[  540.579524] Call trace:
[  540.579527]  __pageblock_pfn_to_page+0x6c/0x14c
[  540.579533]  compact_zone+0x994/0x1058
[  540.579536]  try_to_compact_pages+0x128/0x378
[  540.579540]  __alloc_pages_direct_compact+0x80/0x2b0
[  540.579544]  __alloc_pages_slowpath+0x5c0/0xe10
[  540.579547]  __alloc_pages+0x250/0x2d0
[  540.579550]  __iommu_dma_alloc_noncontiguous+0x13c/0x3fc
[  540.579561]  iommu_dma_alloc+0xa0/0x320
[  540.579565]  dma_alloc_attrs+0xd4/0x108

[quic_charante@quicinc.com: use kfree_rcu() in place of synchronize_rcu(), per David]
  Link: https://lkml.kernel.org/r/1698403778-20938-1-git-send-email-quic_charante@quicinc.com
Link: https://lkml.kernel.org/r/1697202267-23600-1-git-send-email-quic_charante@quicinc.com
Fixes: f46edbd1b1 ("mm/sparsemem: add helpers track active portions of a section at boot")
Signed-off-by: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:54:34 +01:00
Rolf Eike Beer
904fafac10 mm: use __pfn_to_section() instead of open coding it
[ Upstream commit f1dc0db296 ]

It is defined in the same file just a few lines above.

Link: https://lkml.kernel.org/r/4598487.Rc0NezkW7i@mobilepool36.emlix.com
Signed-off-by: Rolf Eike Beer <eb@emlix.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stable-dep-of: 5ec8e8ea8b ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23 08:54:34 +01:00
Waiman Long
429f413ed8 mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
commit a431dbbc54 upstream.

The gcc 12 compiler reports a "'mem_section' will never be NULL" warning
on the following code:

    static inline struct mem_section *__nr_to_section(unsigned long nr)
    {
    #ifdef CONFIG_SPARSEMEM_EXTREME
        if (!mem_section)
                return NULL;
    #endif
        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
                return NULL;
       :

It happens with CONFIG_SPARSEMEM_EXTREME off.  The mem_section definition
is

    #ifdef CONFIG_SPARSEMEM_EXTREME
    extern struct mem_section **mem_section;
    #else
    extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
    #endif

In the !CONFIG_SPARSEMEM_EXTREME case, mem_section is a static
2-dimensional array and so the check "!mem_section[SECTION_NR_TO_ROOT(nr)]"
doesn't make sense.

Fix this warning by moving the "!mem_section[SECTION_NR_TO_ROOT(nr)]"
check up inside the CONFIG_SPARSEMEM_EXTREME block and adding an
explicit NR_SECTION_ROOTS check to make sure that there is no
out-of-bound array access.

Link: https://lkml.kernel.org/r/20220331180246.2746210-1-longman@redhat.com
Fixes: 3e347261a8 ("sparsemem extreme implementation")
Signed-off-by: Waiman Long <longman@redhat.com>
Reported-by: Justin Forbes <jforbes@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-13 20:59:28 +02:00
Baoquan He
240e8d331a mm_zone: add function to check if managed dma zone exists
commit 62b3107073 upstream.

Patch series "Handle warning of allocation failure on DMA zone w/o
managed pages", v4.

**Problem observed:
On x86_64, when crash is triggered and entering into kdump kernel, page
allocation failure can always be seen.

 ---------------------------------
 DMA: preallocated 128 KiB GFP_KERNEL pool for atomic allocations
 swapper/0: page allocation failure: order:5, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0
 CPU: 0 PID: 1 Comm: swapper/0
 Call Trace:
  dump_stack+0x7f/0xa1
  warn_alloc.cold+0x72/0xd6
  ......
  __alloc_pages+0x24d/0x2c0
  ......
  dma_atomic_pool_init+0xdb/0x176
  do_one_initcall+0x67/0x320
  ? rcu_read_lock_sched_held+0x3f/0x80
  kernel_init_freeable+0x290/0x2dc
  ? rest_init+0x24f/0x24f
  kernel_init+0xa/0x111
  ret_from_fork+0x22/0x30
 Mem-Info:
 ------------------------------------

***Root cause:
In the current kernel, it assumes that DMA zone must have managed pages
and try to request pages if CONFIG_ZONE_DMA is enabled. While this is not
always true. E.g in kdump kernel of x86_64, only low 1M is presented and
locked down at very early stage of boot, so that this low 1M won't be
added into buddy allocator to become managed pages of DMA zone. This
exception will always cause page allocation failure if page is requested
from DMA zone.

***Investigation:
This failure happens since below commit merged into linus's tree.
  1a6a9044b9 x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
  23721c8e92 x86/crash: Remove crash_reserve_low_1M()
  f1d4d47c58 x86/setup: Always reserve the first 1M of RAM
  7c321eb2b8 x86/kdump: Remove the backup region handling
  6f599d8423 x86/kdump: Always reserve the low 1M when the crashkernel option is specified

Before them, on x86_64, the low 640K area will be reused by kdump kernel.
So in kdump kernel, the content of low 640K area is copied into a backup
region for dumping before jumping into kdump. Then except of those firmware
reserved region in [0, 640K], the left area will be added into buddy
allocator to become available managed pages of DMA zone.

However, after above commits applied, in kdump kernel of x86_64, the low
1M is reserved by memblock, but not released to buddy allocator. So any
later page allocation requested from DMA zone will fail.

At the beginning, if crashkernel is reserved, the low 1M need be locked
down because AMD SME encrypts memory making the old backup region
mechanims impossible when switching into kdump kernel.

Later, it was also observed that there are BIOSes corrupting memory
under 1M. To solve this, in commit f1d4d47c58, the entire region of
low 1M is always reserved after the real mode trampoline is allocated.

Besides, recently, Intel engineer mentioned their TDX (Trusted domain
extensions) which is under development in kernel also needs to lock down
the low 1M. So we can't simply revert above commits to fix the page allocation
failure from DMA zone as someone suggested.

***Solution:
Currently, only DMA atomic pool and dma-kmalloc will initialize and
request page allocation with GFP_DMA during bootup.

So only initializ DMA atomic pool when DMA zone has available managed
pages, otherwise just skip the initialization.

For dma-kmalloc(), for the time being, let's mute the warning of
allocation failure if requesting pages from DMA zone while no manged
pages.  Meanwhile, change code to use dma_alloc_xx/dma_map_xx API to
replace kmalloc(GFP_DMA), or do not use GFP_DMA when calling kmalloc() if
not necessary.  Christoph is posting patches to fix those under
drivers/scsi/.  Finally, we can remove the need of dma-kmalloc() as people
suggested.

This patch (of 3):

In some places of the current kernel, it assumes that dma zone must have
managed pages if CONFIG_ZONE_DMA is enabled.  While this is not always
true.  E.g in kdump kernel of x86_64, only low 1M is presented and locked
down at very early stage of boot, so that there's no managed pages at all
in DMA zone.  This exception will always cause page allocation failure if
page is requested from DMA zone.

Here add function has_managed_dma() and the relevant helper functions to
check if there's DMA zone with managed pages.  It will be used in later
patches.

Link: https://lkml.kernel.org/r/20211223094435.248523-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20211223094435.248523-2-bhe@redhat.com
Fixes: 6f599d8423 ("x86/kdump: Always reserve the low 1M when the crashkernel option is specified")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: John Donnelly  <john.p.donnelly@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:03:00 +01:00
Linus Torvalds
2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
David Hildenbrand
4b09700244 mm: track present early pages per zone
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.

I. Goal

The goal of this series is improving in-kernel auto-online support.  It
tackles the fundamental problems that:

 1) We can create zone imbalances when onlining all memory blindly to
    ZONE_MOVABLE, in the worst case crashing the system. We have to know
    upfront how much memory we are going to hotplug such that we can
    safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
    via "online_movable". This is far from practical and only applicable in
    limited setups -- like inside VMs under the RHV/oVirt hypervisor which
    will never hotplug more than 3 times the boot memory (and the
    limitation is only in place due to the Linux limitation).

 2) We see more setups that implement dynamic VM resizing, hot(un)plugging
    memory to resize VM memory. In these setups, we might hotplug a lot of
    memory, but it might happen in various small steps in both directions
    (e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
    primary driver of this upstream right now, performing such dynamic
    resizing NUMA-aware via multiple virtio-mem devices.

    Onlining all hotplugged memory to ZONE_NORMAL means we basically have
    no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
    easily run into zone imbalances when growing a VM. We want a mixture,
    and we want as much memory as reasonable/configured in ZONE_MOVABLE.
    Details regarding zone imbalances can be found at [1].

 3) Memory devices consist of 1..X memory block devices, however, the
    kernel doesn't really track the relationship. Consequently, also user
    space has no idea. We want to make per-device decisions.

    As one example, for memory hotunplug it doesn't make sense to use a
    mixture of zones within a single DIMM: we want all MOVABLE if
    possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
    block the whole DIMM from getting hotunplugged.

    As another example, virtio-mem operates on individual units that span
    1..X memory blocks. Similar to a DIMM, we want a unit to either be all
    MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
    all units of a virtio-mem device logically belong together and are
    managed (added/removed) by a single driver. We want as much memory of
    a virtio-mem device to be MOVABLE as possible.

 4) We want memory onlining to be done right from the kernel while adding
    memory, not triggered by user space via udev rules; for example, this
    is reqired for fast memory hotplug for drivers that add individual
    memory blocks, like virito-mem. We want a way to configure a policy in
    the kernel and avoid implementing advanced policies in user space.

The auto-onlining support we have in the kernel is not sufficient.  All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online).  This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.

II. Approach

This series does 3 things:

 1) Introduces the "auto-movable" online policy that initially operates on
    individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
    to make a decision whether a memory block will be onlined to
    ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
    memory does not allow for more MOVABLE memory (details in the
    patches). CMA memory is treated like MOVABLE memory.

 2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
    groups and uses group information to make decisions in the
    "auto-movable" online policy across memory blocks of a single memory
    device (modeled as memory group). More details can be found in patch
    #3 or in the DIMM example below.

 3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
    allowing ZONE_NORMAL memory within a dynamic memory group to allow for
    more ZONE_MOVABLE memory within the same memory group. The target use
    case is dynamic VM resizing using virtio-mem. See the virtio-mem
    example below.

I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).

For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.

III. Target Usage

The target usage will be:

 1) Linux boots with "mhp_default_online_type=offline"

 2) User space (e.g., systemd unit) configures memory onlining (according
    to a config file and system properties), for example:
    * Setting memory_hotplug.online_policy=auto-movable
    * Setting memory_hotplug.auto_movable_ratio=301
    * Setting memory_hotplug.auto_movable_numa_aware=true

 3) User space enabled auto onlining via "echo online >
    /sys/devices/system/memory/auto_online_blocks"

 4) User space triggers manual onlining of all already-offline memory
    blocks (go over offline memory blocks and set them to "online")

IV. Example

For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
	Memory block 0-15:    DMA32   (early)
	Memory block 32-47:   Normal  (early)
	Memory block 48-79:   Movable (DIMM 0)
	Memory block 80-111:  Movable (DIMM 1)
	Memory block 112-143: Movable (DIMM 2)
	Memory block 144-275: Normal  (DIMM 3)
	Memory block 176-207: Normal  (DIMM 4)
	... all Normal
	(-> hotplugged Normal memory does not allow for more Movable memory)

For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
	Memory block 0-15:    DMA32   (early)
	Memory block 32-47:   Normal  (early)
	Memory block 48-143:  Movable (virtio-mem, first 12 GiB)
	Memory block 144:     Normal  (virtio-mem, next 128 MiB)
	Memory block 145-147: Movable (virtio-mem, next 384 MiB)
	Memory block 148:     Normal  (virtio-mem, next 128 MiB)
	Memory block 149-151: Movable (virtio-mem, next 384 MiB)
	... Normal/Movable mixture as above
	(-> hotplugged Normal memory allows for more Movable memory within
	    the same device)

Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.

V. Doc Update

I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.

VI. Future Work

 1) Use memory groups for ppc64 dlpar
 2) Being able to specify a portion of (early) kernel memory that will be
    excluded from the ratio. Like "128 MiB globally/per node" are excluded.

    This might be helpful when starting VMs with extremely small memory
    footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
    the first hotplugged units getting onlined to ZONE_MOVABLE. One
    alternative would be a trigger to not consider ZONE_DMA memory
    in the ratio. We'll have to see if this is really rrequired.
 3) Indicate to user space that MOVABLE might be a bad idea -- especially
    relevant when memory ballooning without support for balloon compaction
    is active.

This patch (of 9):

For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages.  Let's track these pages per zone.

Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.

It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early".  add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.

Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00
Mike Rapoport
859a85ddf9 mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE
Patch series "mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE".

After recent updates to freeing unused parts of the memory map, no
architecture can have holes in the memory map within a pageblock.  This
makes pfn_valid_within() check and CONFIG_HOLES_IN_ZONE configuration
option redundant.

The first patch removes them both in a mechanical way and the second patch
simplifies memory_hotplug::test_pages_in_a_zone() that had
pfn_valid_within() surrounded by more logic than simple if.

This patch (of 2):

After recent changes in freeing of the unused parts of the memory map and
rework of pfn_valid() in arm and arm64 there are no architectures that can
have holes in the memory map within a pageblock and so nothing can enable
CONFIG_HOLES_IN_ZONE which guards non trivial implementation of
pfn_valid_within().

With that, pfn_valid_within() is always hardwired to 1 and can be
completely removed.

Remove calls to pfn_valid_within() and CONFIG_HOLES_IN_ZONE.

Link: https://lkml.kernel.org/r/20210713080035.7464-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210713080035.7464-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:22 -07:00
Charan Teja Reddy
65d759c8f9 mm: compaction: support triggering of proactive compaction by user
The proactive compaction[1] gets triggered for every 500msec and run
compaction on the node for COMPACTION_HPAGE_ORDER (usually order-9) pages
based on the value set to sysctl.compaction_proactiveness.  Triggering the
compaction for every 500msec in search of COMPACTION_HPAGE_ORDER pages is
not needed for all applications, especially on the embedded system
usecases which may have few MB's of RAM.  Enabling the proactive
compaction in its state will endup in running almost always on such
systems.

Other side, proactive compaction can still be very much useful for getting
a set of higher order pages in some controllable manner(controlled by
using the sysctl.compaction_proactiveness).  So, on systems where enabling
the proactive compaction always may proove not required, can trigger the
same from user space on write to its sysctl interface.  As an example, say
app launcher decide to launch the memory heavy application which can be
launched fast if it gets more higher order pages thus launcher can prepare
the system in advance by triggering the proactive compaction from
userspace.

This triggering of proactive compaction is done on a write to
sysctl.compaction_proactiveness by user.

[1]https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=facdaa917c4d5a376d09d25865f5a863f906234a

[akpm@linux-foundation.org: tweak vm.rst, per Mike]

Link: https://lkml.kernel.org/r/1627653207-12317-1-git-send-email-charante@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Nitin Gupta <nigupta@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:17 -07:00
Naoya Horiguchi
01c8d337d1 mm/sparse: set SECTION_NID_SHIFT to 6
Currently SECTION_NID_SHIFT is set to 3, which is incorrect because bit 3
and 4 can be overlapped by sub-field for early NID, and can be
unexpectedly set on NUMA systems.  There are a few non-critical issues
related to this:

- Having SECTION_TAINT_ZONE_DEVICE set for wrong sections forces
  pfn_to_online_page() through the slow path, but doesn't actually break
  the kernel.

- A kdump generation tool like makedumpfile uses this field to calculate
  the physical address to read.  So wrong bits can make the tool access to
  wrong address and fail to create kdump.  This can be avoided by the
  tool, so it's not critical.

To fix it, set SECTION_NID_SHIFT to 6 which is the minimum number of
available bits of section flag field.

Link: https://lkml.kernel.org/r/20210707045548.810271-1-naoya.horiguchi@linux.dev
Fixes: 1f90a3477d ("mm: teach pfn_to_online_page() about ZONE_DEVICE section collisions")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Kazuhito Hagio <k-hagio-ab@nec.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wang Wensheng <wangwensheng4@huawei.com>
Cc: Rui Xiang <rui.xiang@huawei.com>
Cc: Kazu <k-hagio-ab@nec.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:14 -07:00
Ohhoon Kwon
11e02d3729 mm: sparse: remove __section_nr() function
As the last users of __section_nr() are gone, let's remove unused function
__section_nr().

Link: https://lkml.kernel.org/r/20210707150212.855-4-ohoono.kwon@samsung.com
Signed-off-by: Ohhoon Kwon <ohoono.kwon@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:14 -07:00
Mel Gorman
351de44fde mm/swap: make NODE_DATA an inline function on CONFIG_FLATMEM
make W=1 generates the following warning in mm/workingset.c for allnoconfig

  mm/workingset.c: In function `unpack_shadow':
  mm/workingset.c:201:15: warning: variable `nid' set but not used [-Wunused-but-set-variable]
    int memcgid, nid;
                 ^~~

On FLATMEM, NODE_DATA returns a global pglist_data without dereferencing
nid.  Make the helper an inline function to suppress the warning, add type
checking and to apply any side-effects in the parameter list.

Link: https://lkml.kernel.org/r/20210520084809.8576-15-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Zhen Lei
041711ce7c mm: fix spelling mistakes
Fix some spelling mistakes in comments:
each having differents usage ==> each has a different usage
statments ==> statements
adresses ==> addresses
aggresive ==> aggressive
datas ==> data
posion ==> poison
higer ==> higher
precisly ==> precisely
wont ==> won't
We moves tha ==> We move the
endianess ==> endianness

Link: https://lkml.kernel.org/r/20210519065853.7723-2-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:02 -07:00
Anshuman Khandual
16c9afc776 arm64/mm: drop HAVE_ARCH_PFN_VALID
CONFIG_SPARSEMEM_VMEMMAP is now the only available memory model on arm64
platforms and free_unused_memmap() would just return without creating any
holes in the memmap mapping.  There is no need for any special handling in
pfn_valid() and HAVE_ARCH_PFN_VALID can just be dropped.  This also moves
the pfn upper bits sanity check into generic pfn_valid().

Link: https://lkml.kernel.org/r/1621947349-25421-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:29 -07:00
Mike Rapoport
51c656aef6 include/linux/mmzone.h: add documentation for pfn_valid()
Patch series "arm64: drop pfn_valid_within() and simplify pfn_valid()", v4.

These patches aim to remove CONFIG_HOLES_IN_ZONE and essentially hardwire
pfn_valid_within() to 1.

The idea is to mark NOMAP pages as reserved in the memory map and restore
the intended semantics of pfn_valid() to designate availability of struct
page for a pfn.

With this the core mm will be able to cope with the fact that it cannot
use NOMAP pages and the holes created by NOMAP ranges within MAX_ORDER
blocks will be treated correctly even without the need for
pfn_valid_within.

This patch (of 4):

Add comment describing the semantics of pfn_valid() that clarifies that
pfn_valid() only checks for availability of a memory map entry (i.e.
struct page) for a PFN rather than availability of usable memory backing
that PFN.

The most "generic" version of pfn_valid() used by the configurations with
SPARSEMEM enabled resides in include/linux/mmzone.h so this is the most
suitable place for documentation about semantics of pfn_valid().

Link: https://lkml.kernel.org/r/20210511100550.28178-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210511100550.28178-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:29 -07:00
Mel Gorman
44042b4498 mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
The per-cpu page allocator (PCP) only stores order-0 pages.  This means
that all THP and "cheap" high-order allocations including SLUB contends on
the zone->lock.  This patch extends the PCP allocator to store THP and
"cheap" high-order pages.  Note that struct per_cpu_pages increases in
size to 256 bytes (4 cache lines) on x86-64.

Note that this is not necessarily a universal performance win because of
how it is implemented.  High-order pages can cause pcp->high to be
exceeded prematurely for lower-orders so for example, a large number of
THP pages being freed could release order-0 pages from the PCP lists.
Hence, much depends on the allocation/free pattern as observed by a single
CPU to determine if caching helps or hurts a particular workload.

That said, basic performance testing passed.  The following is a netperf
UDP_STREAM test which hits the relevant patches as some of the network
allocations are high-order.

netperf-udp
                                 5.13.0-rc2             5.13.0-rc2
                           mm-pcpburst-v3r4   mm-pcphighorder-v1r7
Hmean     send-64         261.46 (   0.00%)      266.30 *   1.85%*
Hmean     send-128        516.35 (   0.00%)      536.78 *   3.96%*
Hmean     send-256       1014.13 (   0.00%)     1034.63 *   2.02%*
Hmean     send-1024      3907.65 (   0.00%)     4046.11 *   3.54%*
Hmean     send-2048      7492.93 (   0.00%)     7754.85 *   3.50%*
Hmean     send-3312     11410.04 (   0.00%)    11772.32 *   3.18%*
Hmean     send-4096     13521.95 (   0.00%)    13912.34 *   2.89%*
Hmean     send-8192     21660.50 (   0.00%)    22730.72 *   4.94%*
Hmean     send-16384    31902.32 (   0.00%)    32637.50 *   2.30%*

Functionally, a patch like this is necessary to make bulk allocation of
high-order pages work with similar performance to order-0 bulk
allocations.  The bulk allocator is not updated in this series as it would
have to be determined by bulk allocation users how they want to track the
order of pages allocated with the bulk allocator.

Link: https://lkml.kernel.org/r/20210611135753.GC30378@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mike Rapoport
43b02ba93b mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
After removal of the DISCONTIGMEM memory model the FLAT_NODE_MEM_MAP
configuration option is equivalent to FLATMEM.

Drop CONFIG_FLAT_NODE_MEM_MAP and use CONFIG_FLATMEM instead.

Link: https://lkml.kernel.org/r/20210608091316.3622-10-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mike Rapoport
a9ee6cf5c6 mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA
configuration options are equivalent.

Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead.

Done with

	$ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \
		$(git grep -wl CONFIG_NEED_MULTIPLE_NODES)
	$ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \
		$(git grep -wl NEED_MULTIPLE_NODES)

with manual tweaks afterwards.

[rppt@linux.ibm.com: fix arm boot crash]
  Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com

Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mike Rapoport
bb1c50d396 mm: remove CONFIG_DISCONTIGMEM
There are no architectures that support DISCONTIGMEM left.

Remove the configuration option and the dead code it was guarding in the
generic memory management code.

Link: https://lkml.kernel.org/r/20210608091316.3622-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Dong Aisheng
777c00f5ed mm: drop SECTION_SHIFT in code comments
Actually SECTIONS_SHIFT is used in the kernel code, so the code comments
is strictly incorrect.  And since commit bbeae5b05e ("mm: move page
flags layout to separate header"), SECTIONS_SHIFT definition has been
moved to include/linux/page-flags-layout.h, since code itself looks quite
straighforward, instead of moving the code comment into the new place as
well, we just simply remove it.

This also fixed a checkpatch complain derived from the original code:
WARNING: please, no space before tabs
+ * SECTIONS_SHIFT    ^I^I#bits space required to store a section #$

Link: https://lkml.kernel.org/r/20210531091908.1738465-2-aisheng.dong@nxp.com
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Suggested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mel Gorman
74f4482209 mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
This introduces a new sysctl vm.percpu_pagelist_high_fraction.  It is
similar to the old vm.percpu_pagelist_fraction.  The old sysctl increased
both pcp->batch and pcp->high with the higher pcp->high potentially
reducing zone->lock contention.  However, the higher pcp->batch value also
potentially increased allocation latency while the PCP was refilled.  This
sysctl only adjusts pcp->high so that zone->lock contention is potentially
reduced but allocation latency during a PCP refill remains the same.

  # grep -E "high:|batch" /proc/zoneinfo | tail -2
              high:  649
              batch: 63

  # sysctl vm.percpu_pagelist_high_fraction=8
  # grep -E "high:|batch" /proc/zoneinfo | tail -2
              high:  35071
              batch: 63

  # sysctl vm.percpu_pagelist_high_fraction=64
              high:  4383
              batch: 63

  # sysctl vm.percpu_pagelist_high_fraction=0
              high:  649
              batch: 63

[mgorman@techsingularity.net: fix documentation]
  Link: https://lkml.kernel.org/r/20210528151010.GQ30378@techsingularity.net

Link: https://lkml.kernel.org/r/20210525080119.5455-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:55 -07:00
Mel Gorman
c49c2c47da mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
When kswapd is active then direct reclaim is potentially active.  In
either case, it is possible that a zone would be balanced if pages were
not trapped on PCP lists.  Instead of draining remote pages, simply limit
the size of the PCP lists while kswapd is active.

Link: https://lkml.kernel.org/r/20210525080119.5455-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
3b12e7e979 mm/page_alloc: scale the number of pages that are batch freed
When a task is freeing a large number of order-0 pages, it may acquire the
zone->lock multiple times freeing pages in batches.  This may
unnecessarily contend on the zone lock when freeing very large number of
pages.  This patch adapts the size of the batch based on the recent
pattern to scale the batch size for subsequent frees.

As the machines I used were not large enough to test this are not large
enough to illustrate a problem, a debugging patch shows patterns like the
following (slightly editted for clarity)

Baseline vanilla kernel
  time-unmap-14426   [...] free_pcppages_bulk: free   63 count  378 high  378
  time-unmap-14426   [...] free_pcppages_bulk: free   63 count  378 high  378
  time-unmap-14426   [...] free_pcppages_bulk: free   63 count  378 high  378
  time-unmap-14426   [...] free_pcppages_bulk: free   63 count  378 high  378
  time-unmap-14426   [...] free_pcppages_bulk: free   63 count  378 high  378

With patches
  time-unmap-7724    [...] free_pcppages_bulk: free  126 count  814 high  814
  time-unmap-7724    [...] free_pcppages_bulk: free  252 count  814 high  814
  time-unmap-7724    [...] free_pcppages_bulk: free  504 count  814 high  814
  time-unmap-7724    [...] free_pcppages_bulk: free  751 count  814 high  814
  time-unmap-7724    [...] free_pcppages_bulk: free  751 count  814 high  814

Link: https://lkml.kernel.org/r/20210525080119.5455-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
bbbecb35a4 mm/page_alloc: delete vm.percpu_pagelist_fraction
Patch series "Calculate pcp->high based on zone sizes and active CPUs", v2.

The per-cpu page allocator (PCP) is meant to reduce contention on the zone
lock but the sizing of batch and high is archaic and neither takes the
zone size into account or the number of CPUs local to a zone.  With larger
zones and more CPUs per node, the contention is getting worse.
Furthermore, the fact that vm.percpu_pagelist_fraction adjusts both batch
and high values means that the sysctl can reduce zone lock contention but
also increase allocation latencies.

This series disassociates pcp->high from pcp->batch and then scales
pcp->high based on the size of the local zone with limited impact to
reclaim and accounting for active CPUs but leaves pcp->batch static.  It
also adapts the number of pages that can be on the pcp list based on
recent freeing patterns.

The motivation is partially to adjust to larger memory sizes but is also
driven by the fact that large batches of page freeing via release_pages()
often shows zone contention as a major part of the problem.  Another is a
bug report based on an older kernel where a multi-terabyte process can
takes several minutes to exit.  A workaround was to use
vm.percpu_pagelist_fraction to increase the pcp->high value but testing
indicated that a production workload could not use the same values because
of an increase in allocation latencies.  Unfortunately, I cannot reproduce
this test case myself as the multi-terabyte machines are in active use but
it should alleviate the problem.

The series aims to address both and partially acts as a pre-requisite.
pcp only works with order-0 which is useless for SLUB (when using high
orders) and THP (unconditionally).  To store high-order pages on PCP, the
pcp->high values need to be increased first.

This patch (of 6):

The vm.percpu_pagelist_fraction is used to increase the batch and high
limits for the per-cpu page allocator (PCP).  The intent behind the sysctl
is to reduce zone lock acquisition when allocating/freeing pages but it
has a problem.  While it can decrease contention, it can also increase
latency on the allocation side due to unreasonably large batch sizes.
This leads to games where an administrator adjusts
percpu_pagelist_fraction on the fly to work around contention and
allocation latency problems.

This series aims to alleviate the problems with zone lock contention while
avoiding the allocation-side latency problems.  For the purposes of
review, it's easier to remove this sysctl now and reintroduce a similar
sysctl later in the series that deals only with pcp->high.

Link: https://lkml.kernel.org/r/20210525080119.5455-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210525080119.5455-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
f19298b951 mm/vmstat: convert NUMA statistics to basic NUMA counters
NUMA statistics are maintained on the zone level for hits, misses, foreign
etc but nothing relies on them being perfectly accurate for functional
correctness.  The counters are used by userspace to get a general overview
of a workloads NUMA behaviour but the page allocator incurs a high cost to
maintain perfect accuracy similar to what is required for a vmstat like
NR_FREE_PAGES.  There even is a sysctl vm.numa_stat to allow userspace to
turn off the collection of NUMA statistics like NUMA_HIT.

This patch converts NUMA_HIT and friends to be NUMA events with similar
accuracy to VM events.  There is a possibility that slight errors will be
introduced but the overall trend as seen by userspace will be similar.
The counters are no longer updated from vmstat_refresh context as it is
unnecessary overhead for counters that may never be read by userspace.
Note that counters could be maintained at the node level to save space but
it would have a user-visible impact due to /proc/zoneinfo.

[lkp@intel.com: Fix misplaced closing brace for !CONFIG_NUMA]

Link: https://lkml.kernel.org/r/20210512095458.30632-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
dbbee9d5cd mm/page_alloc: convert per-cpu list protection to local_lock
There is a lack of clarity of what exactly
local_irq_save/local_irq_restore protects in page_alloc.c .  It conflates
the protection of per-cpu page allocation structures with per-cpu vmstat
deltas.

This patch protects the PCP structure using local_lock which for most
configurations is identical to IRQ enabling/disabling.  The scope of the
lock is still wider than it should be but this is decreased later.

It is possible for the local_lock to be embedded safely within struct
per_cpu_pages but it adds complexity to free_unref_page_list.

[akpm@linux-foundation.org: coding style fixes]
[mgorman@techsingularity.net: work around a pahole limitation with zero-sized struct pagesets]
  Link: https://lkml.kernel.org/r/20210526080741.GW30378@techsingularity.net
[lkp@intel.com: Make pagesets static]

Link: https://lkml.kernel.org/r/20210512095458.30632-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mel Gorman
28f836b677 mm/page_alloc: split per cpu page lists and zone stats
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues.  For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used.  Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.

This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.

Why local_lock?  PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst

   local_irq_disable();
   spin_lock(&lock);

The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock).  While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately.  To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed.  That is a
custom lock that is similar, but worse, than local_lock.  Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long.  By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking.  As a
bonus, local_lock also means that PROVE_LOCKING does something useful.

After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do.  The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.

The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency.  Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.

Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock.  The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer.  The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.

No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT.  However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series.  Focusing on the array
variant of the bulk page allocator reveals the following.

(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size

         Baseline        Patched
 1       56.383          54.225 (+3.83%)
 2       40.047          35.492 (+11.38%)
 3       37.339          32.643 (+12.58%)
 4       35.578          30.992 (+12.89%)
 8       33.592          29.606 (+11.87%)
 16      32.362          28.532 (+11.85%)
 32      31.476          27.728 (+11.91%)
 64      30.633          27.252 (+11.04%)
 128     30.596          27.090 (+11.46%)

While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.

This patch (of 9):

The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists.  This is inconsistent because the vmstats for a
node are stored on a dedicated structure.  The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.

This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures.  It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).

Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.

[mgorman@techsingularity.net: make it W=1 cleaner]
  Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
  Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]

Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:54 -07:00
Mike Rapoport
b19bd1c976 mm/mmzone.h: simplify is_highmem_idx()
There is a lot of historical ifdefery in is_highmem_idx() and its helper
zone_movable_is_highmem() that was required because of two different paths
for nodes and zones initialization that were selected at compile time.

Until commit 3f08a302f5 ("mm: remove CONFIG_HAVE_MEMBLOCK_NODE_MAP
option") the movable_zone variable was only available for configurations
that had CONFIG_HAVE_MEMBLOCK_NODE_MAP enabled so the test in
zone_movable_is_highmem() used that variable only for such configurations.
For other configurations the test checked if the index of ZONE_MOVABLE
was greater by 1 than the index of ZONE_HIGMEM and then movable zone was
considered a highmem zone.  Needless to say, ZONE_MOVABLE - 1 equals
ZONE_HIGHMEM by definition when CONFIG_HIGHMEM=y.

Commit 3f08a302f5 ("mm: remove CONFIG_HAVE_MEMBLOCK_NODE_MAP option")
made movable_zone variable always available.  Since this variable is set
to ZONE_HIGHMEM if CONFIG_HIGHMEM is enabled and highmem zone is
populated, it is enough to check whether

	zone_idx == ZONE_MOVABLE && movable_zone == ZONE_HIGMEM

to test if zone index points to a highmem zone.

Remove zone_movable_is_highmem() that is not used anywhere except
is_highmem_idx() and use the test above in is_highmem_idx() instead.

Link: https://lkml.kernel.org/r/20210426141927.1314326-3-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:53 -07:00
Shijie Luo
cb152a1a95 mm: fix some typos and code style problems
fix some typos and code style problems in mm.

gfp.h: s/MAXNODES/MAX_NUMNODES
mmzone.h: s/then/than
rmap.c: s/__vma_split()/__vma_adjust()
swap.c: s/__mod_zone_page_stat/__mod_zone_page_state, s/is is/is
swap_state.c: s/whoes/whose
z3fold.c: code style problem fix in z3fold_unregister_migration
zsmalloc.c: s/of/or, s/give/given

Link: https://lkml.kernel.org/r/20210419083057.64820-1-luoshijie1@huawei.com
Signed-off-by: Shijie Luo <luoshijie1@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 00:26:33 -07:00
Oscar Salvador
a08a2ae346 mm,memory_hotplug: allocate memmap from the added memory range
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section.  Currently, alloc_pages_node() is used
for those allocations.

This has some disadvantages:
 a) an existing memory is consumed for that purpose
    (eg: ~2MB per 128MB memory section on x86_64)
    This can even lead to extreme cases where system goes OOM because
    the physically hotplugged memory depletes the available memory before
    it is onlined.
 b) if the whole node is movable then we have off-node struct pages
    which has performance drawbacks.
 c) It might be there are no PMD_ALIGNED chunks so memmap array gets
    populated with base pages.

This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.

Vmemap page tables can map arbitrary memory.  That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables.  This implementation uses the beginning of the hotplugged memory
for that purpose.

There are some non-obviously things to consider though.

Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed.  This means that the reserved physical range is not
online although it is used.  The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns.  The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined.  For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g.  vmemmap
page tables).

The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory).  That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.

As per above, the functions that are introduced are:

 - mhp_init_memmap_on_memory:
   Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
   kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
   fully span.

 - mhp_deinit_memmap_on_memory:
   Offlines as many sections as vmemmap pages fully span, removes the
   range from zhe zone by remove_pfn_range_from_zone(), and calls
   kasan_remove_zero_shadow() for the range.

The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages().  Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory().  Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.

On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages().  This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty.  If offline_pages() fails, we account back
vmemmap pages.  If it succeeds, we call mhp_deinit_memmap_on_memory().

Hot-remove:

 We need to be careful when removing memory, as adding and
 removing memory needs to be done with the same granularity.
 To check that this assumption is not violated, we check the
 memory range we want to remove and if a) any memory block has
 vmemmap pages and b) the range spans more than a single memory
 block, we scream out loud and refuse to proceed.

 If all is good and the range was using memmap on memory (aka vmemmap pages),
 we construct an altmap structure so free_hugepage_table does the right
 thing and calls vmem_altmap_free instead of free_pagetable.

Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:26 -07:00
Pavel Tatashin
d1e153fea2 mm/gup: migrate pinned pages out of movable zone
We should not pin pages in ZONE_MOVABLE.  Currently, we do not pin only
movable CMA pages.  Generalize the function that migrates CMA pages to
migrate all movable pages.  Use is_pinnable_page() to check which pages
need to be migrated

Link: https://lkml.kernel.org/r/20210215161349.246722-10-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:26 -07:00
Pavel Tatashin
9afaf30f7a mm/gup: do not migrate zero page
On some platforms ZERO_PAGE(0) might end-up in a movable zone.  Do not
migrate zero page in gup during longterm pinning as migration of zero page
is not allowed.

For example, in x86 QEMU with 16G of memory and kernelcore=5G parameter, I
see the following:

Boot#1: zero_pfn  0x48a8d zero_pfn zone: ZONE_DMA32
Boot#2: zero_pfn 0x20168d zero_pfn zone: ZONE_MOVABLE

On x86, empty_zero_page is declared in .bss and depending on the loader
may end up in different physical locations during boots.

Also, move is_zero_pfn() my_zero_pfn() functions under CONFIG_MMU, because
zero_pfn that they are using is declared in memory.c which is compiled
with CONFIG_MMU.

Link: https://lkml.kernel.org/r/20210215161349.246722-9-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:26 -07:00
Mike Rapoport
198fba4137 mm/mmzone.h: fix existing kernel-doc comments and link them to core-api
There are a couple of kernel-doc comments in include/linux/mmzone.h but
they have minor formatting issues that would cause kernel-doc warnings.

Fix the formatting of those comments, add missing Return: descriptions and
link include/linux/mmzone.h to Documentation/core-api/mm-api.rst

Link: https://lkml.kernel.org/r/20210426141927.1314326-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30 11:20:43 -07:00
Dan Williams
1f90a3477d mm: teach pfn_to_online_page() about ZONE_DEVICE section collisions
While pfn_to_online_page() is able to determine pfn_valid() at subsection
granularity it is not able to reliably determine if a given pfn is also
online if the section is mixes ZONE_{NORMAL,MOVABLE} with ZONE_DEVICE.
This means that pfn_to_online_page() may return invalid @page objects.
For example with a memory map like:

100000000-1fbffffff : System RAM
  142000000-143002e16 : Kernel code
  143200000-143713fff : Kernel rodata
  143800000-143b15b7f : Kernel data
  144227000-144ffffff : Kernel bss
1fc000000-2fbffffff : Persistent Memory (legacy)
  1fc000000-2fbffffff : namespace0.0

This command:

echo 0x1fc000000 > /sys/devices/system/memory/soft_offline_page

...succeeds when it should fail.  When it succeeds it touches an
uninitialized page and may crash or cause other damage (see
dissolve_free_huge_page()).

While the memory map above is contrived via the memmap=ss!nn kernel
command line option, the collision happens in practice on shipping
platforms.  The memory controller resources that decode spans of physical
address space are a limited resource.  One technique platform-firmware
uses to conserve those resources is to share a decoder across 2 devices to
keep the address range contiguous.  Unfortunately the unit of operation of
a decoder is 64MiB while the Linux section size is 128MiB.  This results
in situations where, without subsection hotplug memory mappings with
different lifetimes collide into one object that can only express one
lifetime.

Update move_pfn_range_to_zone() to flag (SECTION_TAINT_ZONE_DEVICE) a
section that mixes ZONE_DEVICE pfns with other online pfns.  With
SECTION_TAINT_ZONE_DEVICE to delineate, pfn_to_online_page() can fall back
to a slow-path check for ZONE_DEVICE pfns in an online section.  In the
fast path online_section() for a full ZONE_DEVICE section returns false.

Because the collision case is rare, and for simplicity, the
SECTION_TAINT_ZONE_DEVICE flag is never cleared once set.

[dan.j.williams@intel.com: fix CONFIG_ZONE_DEVICE=n build]
  Link: https://lkml.kernel.org/r/CAPcyv4iX+7LAgAeSqx7Zw-Zd=ZV9gBv8Bo7oTbwCOOqJoZ3+Yg@mail.gmail.com

Link: https://lkml.kernel.org/r/161058500675.1840162.7887862152161279354.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: ba72b4c8cf ("mm/sparsemem: support sub-section hotplug")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
David Hildenbrand
3c381db1fa mm/page_alloc: count CMA pages per zone and print them in /proc/zoneinfo
Let's count the number of CMA pages per zone and print them in
/proc/zoneinfo.

Having access to the total number of CMA pages per zone is helpful for
debugging purposes to know where exactly the CMA pages ended up, and to
figure out how many pages of a zone might behave differently, even after
some of these pages might already have been allocated.

As one example, CMA pages part of a kernel zone cannot be used for
ordinary kernel allocations but instead behave more like ZONE_MOVABLE.

For now, we are only able to get the global nr+free cma pages from
/proc/meminfo and the free cma pages per zone from /proc/zoneinfo.

Example after this patch when booting a 6 GiB QEMU VM with
"hugetlb_cma=2G":
  # cat /proc/zoneinfo | grep cma
          cma      0
        nr_free_cma  0
          cma      0
        nr_free_cma  0
          cma      524288
        nr_free_cma  493016
          cma      0
          cma      0
  # cat /proc/meminfo | grep Cma
  CmaTotal:        2097152 kB
  CmaFree:         1972064 kB

Note: We print even without CONFIG_CMA, just like "nr_free_cma"; this way,
      one can be sure when spotting "cma 0", that there are definetly no
      CMA pages located in a zone.

[david@redhat.com: v2]
  Link: https://lkml.kernel.org/r/20210128164533.18566-1-david@redhat.com
[david@redhat.com: v3]
  Link: https://lkml.kernel.org/r/20210129113451.22085-1-david@redhat.com

Link: https://lkml.kernel.org/r/20210127101813.6370-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00
Yu Zhao
2091339d59 mm/vmscan.c: make lruvec_lru_size() static
All other references to the function were removed after
commit b910718a94 ("mm: vmscan: detect file thrashing at the reclaim
root").

Link: https://lore.kernel.org/linux-mm/20201207220949.830352-11-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-11-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:34 -08:00
Shakeel Butt
b603894248 mm: memcg: add swapcache stat for memcg v2
This patch adds swapcache stat for the cgroup v2.  The swapcache
represents the memory that is accounted against both the memory and the
swap limit of the cgroup.  The main motivation behind exposing the
swapcache stat is for enabling users to gracefully migrate from cgroup
v1's memsw counter to cgroup v2's memory and swap counters.

Cgroup v1's memsw limit allows users to limit the memory+swap usage of a
workload but without control on the exact proportion of memory and swap.
Cgroup v2 provides separate limits for memory and swap which enables more
control on the exact usage of memory and swap individually for the
workload.

With some little subtleties, the v1's memsw limit can be switched with the
sum of the v2's memory and swap limits.  However the alternative for memsw
usage is not yet available in cgroup v2.  Exposing per-cgroup swapcache
stat enables that alternative.  Adding the memory usage and swap usage and
subtracting the swapcache will approximate the memsw usage.  This will
help in the transparent migration of the workloads depending on memsw
usage and limit to v2' memory and swap counters.

The reasons these applications are still interested in this approximate
memsw usage are: (1) these applications are not really interested in two
separate memory and swap usage metrics.  A single usage metric is more
simple to use and reason about for them.

(2) The memsw usage metric hides the underlying system's swap setup from
the applications.  Applications with multiple instances running in a
datacenter with heterogeneous systems (some have swap and some don't) will
keep seeing a consistent view of their usage.

[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]

Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
380780e718 mm: memcontrol: convert NR_FILE_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_FILE_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
a1528e21f8 mm: memcontrol: convert NR_SHMEM_PMDMAPPED account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_SHMEM_PMDMAPPED account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
57b2847d3c mm: memcontrol: convert NR_SHMEM_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_SHMEM_THPS account to pages.  This patch is
consistent with 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival").  Doing this also can make the unit of vmstat counters more
unified.  Finally, the unit of the vmstat counters are pages, kB and
bytes.  The B/KB suffix can tell us that the unit is bytes or kB.  The
rest which is without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
bf9ecead53 mm: memcontrol: convert NR_FILE_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with if hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_FILE_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Muchun Song
69473e5de8 mm: memcontrol: convert NR_ANON_THPS account to pages
Currently we use struct per_cpu_nodestat to cache the vmstat counters,
which leads to inaccurate statistics especially THP vmstat counters.  In
the systems with hundreds of processors it can be GBs of memory.  For
example, for a 96 CPUs system, the threshold is the maximum number of 125.
And the per cpu counters can cache 23.4375 GB in total.

The THP page is already a form of batched addition (it will add 512 worth
of memory in one go) so skipping the batching seems like sensible.
Although every THP stats update overflows the per-cpu counter, resorting
to atomic global updates.  But it can make the statistics more accuracy
for the THP vmstat counters.

So we convert the NR_ANON_THPS account to pages.  This patch is consistent
with 8f182270df ("mm/swap.c: flush lru pvecs on compound page arrival").
Doing this also can make the unit of vmstat counters more unified.
Finally, the unit of the vmstat counters are pages, kB and bytes.  The
B/KB suffix can tell us that the unit is bytes or kB.  The rest which is
without suffix are pages.

Link: https://lkml.kernel.org/r/20201228164110.2838-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael. J. Wysocki <rafael@kernel.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24 13:38:29 -08:00
Hugh Dickins
15b4473617 mm/lru: revise the comments of lru_lock
Since we changed the pgdat->lru_lock to lruvec->lru_lock, it's time to fix
the incorrect comments in code.  Also fixed some zone->lru_lock comment
error from ancient time.  etc.

I struggled to understand the comment above move_pages_to_lru() (surely
it never calls page_referenced()), and eventually realized that most of
it had got separated from shrink_active_list(): move that comment back.

Link: https://lkml.kernel.org/r/1604566549-62481-20-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:04 -08:00
Alex Shi
6168d0da2b mm/lru: replace pgdat lru_lock with lruvec lock
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for
each of memcg per node.  So on a large machine, each of memcg don't have
to suffer from per node pgdat->lru_lock competition.  They could go fast
with their self lru_lock.

After move memcg charge before lru inserting, page isolation could
serialize page's memcg, then per memcg lruvec lock is stable and could
replace per node lru lock.

In isolate_migratepages_block(), compact_unlock_should_abort and
lock_page_lruvec_irqsave are open coded to work with compact_control.
Also add a debug func in locking which may give some clues if there are
sth out of hands.

Daniel Jordan's testing show 62% improvement on modified readtwice case on
his 2P * 10 core * 2 HT broadwell box.
https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/

Hugh Dickins helped on the patch polish, thanks!

[alex.shi@linux.alibaba.com: fix comment typo]
  Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com
[alex.shi@linux.alibaba.com: use page_memcg()]
  Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com

Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rong Chen <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 14:48:04 -08:00
Linus Torvalds
ac73e3dc8a Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:

 - a few random little subsystems

 - almost all of the MM patches which are staged ahead of linux-next
   material. I'll trickle to post-linux-next work in as the dependents
   get merged up.

Subsystems affected by this patch series: kthread, kbuild, ide, ntfs,
ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache,
gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation,
kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction,
oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc,
uaccess, zram, and cleanups).

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits)
  mm: cleanup kstrto*() usage
  mm: fix fall-through warnings for Clang
  mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at
  mm: shmem: convert shmem_enabled_show to use sysfs_emit_at
  mm:backing-dev: use sysfs_emit in macro defining functions
  mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening
  mm: use sysfs_emit for struct kobject * uses
  mm: fix kernel-doc markups
  zram: break the strict dependency from lzo
  zram: add stat to gather incompressible pages since zram set up
  zram: support page writeback
  mm/process_vm_access: remove redundant initialization of iov_r
  mm/zsmalloc.c: rework the list_add code in insert_zspage()
  mm/zswap: move to use crypto_acomp API for hardware acceleration
  mm/zswap: fix passing zero to 'PTR_ERR' warning
  mm/zswap: make struct kernel_param_ops definitions const
  userfaultfd/selftests: hint the test runner on required privilege
  userfaultfd/selftests: fix retval check for userfaultfd_open()
  userfaultfd/selftests: always dump something in modes
  userfaultfd: selftests: make __{s,u}64 format specifiers portable
  ...
2020-12-15 12:53:37 -08:00
Vlastimil Babka
952eaf8159 mm, page_alloc: cache pageset high and batch in struct zone
All per-cpu pagesets for a zone use the same high and batch values, that
are duplicated there just for performance (locality) reasons.  This patch
adds the same variables also to struct zone as a shared copy.

This will be useful later for making possible to disable pcplists
temporarily by setting high value to 0, while remembering the values for
restoring them later.  But we can also immediately benefit from not
updating pagesets of all possible cpus in case the newly recalculated
values (after sysctl change or memory online/offline) are actually
unchanged from the previous ones.

Link: https://lkml.kernel.org/r/20201111092812.11329-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:43 -08:00
Mike Rapoport
5e545df329 arm: remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
ARM is the only architecture that defines CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
which in turn enables memmap_valid_within() function that is intended to
verify existence  of struct page associated with a pfn when there are holes
in the memory map.

However, the ARCH_HAS_HOLES_MEMORYMODEL also enables HAVE_ARCH_PFN_VALID
and arch-specific pfn_valid() implementation that also deals with the holes
in the memory map.

The only two users of memmap_valid_within() call this function after
a call to pfn_valid() so the memmap_valid_within() check becomes redundant.

Remove CONFIG_ARCH_HAS_HOLES_MEMORYMODEL and memmap_valid_within() and rely
entirely on ARM's implementation of pfn_valid() that is now enabled
unconditionally.

Link: https://lkml.kernel.org/r/20201101170454.9567-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:42 -08:00
Mike Rapoport
03e92a5e09 ia64: remove custom __early_pfn_to_nid()
The ia64 implementation of __early_pfn_to_nid() essentially relies on the
same data as the generic implementation.

The correspondence between memory ranges and nodes is set in memblock
during early memory initialization in register_active_ranges() function.

The initialization of sparsemem that requires early_pfn_to_nid() happens
later and it can use the memblock information like the other architectures.

Link: https://lkml.kernel.org/r/20201101170454.9567-3-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Michael Schmitz <schmitzmic@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:42 -08:00
Shakeel Butt
f0c0c115fb mm: memcontrol: account pagetables per node
For many workloads, pagetable consumption is significant and it makes
sense to expose it in the memory.stat for the memory cgroups.  However at
the moment, the pagetables are accounted per-zone.  Converting them to
per-node and using the right interface will correctly account for the
memory cgroups as well.

[akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/]

Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:40 -08:00
Nicolas Saenz Julienne
04435217f9 mm: Remove examples from enum zone_type comment
We can't really list every setup in common code. On top of that they are
unlikely to stay true for long as things change in the arch trees
independently of this comment.

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20201119175400.9995-8-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-20 09:34:14 +00:00