linux-yocto/kernel/bpf/task_iter.c
Christian Brauner 0ede61d858
file: convert to SLAB_TYPESAFE_BY_RCU
In recent discussions around some performance improvements in the file
handling area we discussed switching the file cache to rely on
SLAB_TYPESAFE_BY_RCU which allows us to get rid of call_rcu() based
freeing for files completely. This is a pretty sensitive change overall
but it might actually be worth doing.

The main downside is the subtlety. The other one is that we should
really wait for Jann's patch to land that enables KASAN to handle
SLAB_TYPESAFE_BY_RCU UAFs. Currently it doesn't but a patch for this
exists.

With SLAB_TYPESAFE_BY_RCU objects may be freed and reused multiple times
which requires a few changes. So it isn't sufficient anymore to just
acquire a reference to the file in question under rcu using
atomic_long_inc_not_zero() since the file might have already been
recycled and someone else might have bumped the reference.

In other words, callers might see reference count bumps from newer
users. For this reason it is necessary to verify that the pointer is the
same before and after the reference count increment. This pattern can be
seen in get_file_rcu() and __files_get_rcu().

In addition, it isn't possible to access or check fields in struct file
without first aqcuiring a reference on it. Not doing that was always
very dodgy and it was only usable for non-pointer data in struct file.
With SLAB_TYPESAFE_BY_RCU it is necessary that callers first acquire a
reference under rcu or they must hold the files_lock of the fdtable.
Failing to do either one of this is a bug.

Thanks to Jann for pointing out that we need to ensure memory ordering
between reallocations and pointer check by ensuring that all subsequent
loads have a dependency on the second load in get_file_rcu() and
providing a fixup that was folded into this patch.

Cc: Jann Horn <jannh@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-10-19 11:02:48 +02:00

863 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2020 Facebook */
#include <linux/init.h>
#include <linux/namei.h>
#include <linux/pid_namespace.h>
#include <linux/fs.h>
#include <linux/fdtable.h>
#include <linux/filter.h>
#include <linux/btf_ids.h>
#include "mmap_unlock_work.h"
static const char * const iter_task_type_names[] = {
"ALL",
"TID",
"PID",
};
struct bpf_iter_seq_task_common {
struct pid_namespace *ns;
enum bpf_iter_task_type type;
u32 pid;
u32 pid_visiting;
};
struct bpf_iter_seq_task_info {
/* The first field must be struct bpf_iter_seq_task_common.
* this is assumed by {init, fini}_seq_pidns() callback functions.
*/
struct bpf_iter_seq_task_common common;
u32 tid;
};
static struct task_struct *task_group_seq_get_next(struct bpf_iter_seq_task_common *common,
u32 *tid,
bool skip_if_dup_files)
{
struct task_struct *task, *next_task;
struct pid *pid;
u32 saved_tid;
if (!*tid) {
/* The first time, the iterator calls this function. */
pid = find_pid_ns(common->pid, common->ns);
if (!pid)
return NULL;
task = get_pid_task(pid, PIDTYPE_TGID);
if (!task)
return NULL;
*tid = common->pid;
common->pid_visiting = common->pid;
return task;
}
/* If the control returns to user space and comes back to the
* kernel again, *tid and common->pid_visiting should be the
* same for task_seq_start() to pick up the correct task.
*/
if (*tid == common->pid_visiting) {
pid = find_pid_ns(common->pid_visiting, common->ns);
task = get_pid_task(pid, PIDTYPE_PID);
return task;
}
pid = find_pid_ns(common->pid_visiting, common->ns);
if (!pid)
return NULL;
task = get_pid_task(pid, PIDTYPE_PID);
if (!task)
return NULL;
retry:
if (!pid_alive(task)) {
put_task_struct(task);
return NULL;
}
next_task = next_thread(task);
put_task_struct(task);
if (!next_task)
return NULL;
saved_tid = *tid;
*tid = __task_pid_nr_ns(next_task, PIDTYPE_PID, common->ns);
if (!*tid || *tid == common->pid) {
/* Run out of tasks of a process. The tasks of a
* thread_group are linked as circular linked list.
*/
*tid = saved_tid;
return NULL;
}
get_task_struct(next_task);
common->pid_visiting = *tid;
if (skip_if_dup_files && task->files == task->group_leader->files) {
task = next_task;
goto retry;
}
return next_task;
}
static struct task_struct *task_seq_get_next(struct bpf_iter_seq_task_common *common,
u32 *tid,
bool skip_if_dup_files)
{
struct task_struct *task = NULL;
struct pid *pid;
if (common->type == BPF_TASK_ITER_TID) {
if (*tid && *tid != common->pid)
return NULL;
rcu_read_lock();
pid = find_pid_ns(common->pid, common->ns);
if (pid) {
task = get_pid_task(pid, PIDTYPE_TGID);
*tid = common->pid;
}
rcu_read_unlock();
return task;
}
if (common->type == BPF_TASK_ITER_TGID) {
rcu_read_lock();
task = task_group_seq_get_next(common, tid, skip_if_dup_files);
rcu_read_unlock();
return task;
}
rcu_read_lock();
retry:
pid = find_ge_pid(*tid, common->ns);
if (pid) {
*tid = pid_nr_ns(pid, common->ns);
task = get_pid_task(pid, PIDTYPE_PID);
if (!task) {
++*tid;
goto retry;
} else if (skip_if_dup_files && !thread_group_leader(task) &&
task->files == task->group_leader->files) {
put_task_struct(task);
task = NULL;
++*tid;
goto retry;
}
}
rcu_read_unlock();
return task;
}
static void *task_seq_start(struct seq_file *seq, loff_t *pos)
{
struct bpf_iter_seq_task_info *info = seq->private;
struct task_struct *task;
task = task_seq_get_next(&info->common, &info->tid, false);
if (!task)
return NULL;
if (*pos == 0)
++*pos;
return task;
}
static void *task_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_iter_seq_task_info *info = seq->private;
struct task_struct *task;
++*pos;
++info->tid;
put_task_struct((struct task_struct *)v);
task = task_seq_get_next(&info->common, &info->tid, false);
if (!task)
return NULL;
return task;
}
struct bpf_iter__task {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct task_struct *, task);
};
DEFINE_BPF_ITER_FUNC(task, struct bpf_iter_meta *meta, struct task_struct *task)
static int __task_seq_show(struct seq_file *seq, struct task_struct *task,
bool in_stop)
{
struct bpf_iter_meta meta;
struct bpf_iter__task ctx;
struct bpf_prog *prog;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, in_stop);
if (!prog)
return 0;
ctx.meta = &meta;
ctx.task = task;
return bpf_iter_run_prog(prog, &ctx);
}
static int task_seq_show(struct seq_file *seq, void *v)
{
return __task_seq_show(seq, v, false);
}
static void task_seq_stop(struct seq_file *seq, void *v)
{
if (!v)
(void)__task_seq_show(seq, v, true);
else
put_task_struct((struct task_struct *)v);
}
static int bpf_iter_attach_task(struct bpf_prog *prog,
union bpf_iter_link_info *linfo,
struct bpf_iter_aux_info *aux)
{
unsigned int flags;
struct pid *pid;
pid_t tgid;
if ((!!linfo->task.tid + !!linfo->task.pid + !!linfo->task.pid_fd) > 1)
return -EINVAL;
aux->task.type = BPF_TASK_ITER_ALL;
if (linfo->task.tid != 0) {
aux->task.type = BPF_TASK_ITER_TID;
aux->task.pid = linfo->task.tid;
}
if (linfo->task.pid != 0) {
aux->task.type = BPF_TASK_ITER_TGID;
aux->task.pid = linfo->task.pid;
}
if (linfo->task.pid_fd != 0) {
aux->task.type = BPF_TASK_ITER_TGID;
pid = pidfd_get_pid(linfo->task.pid_fd, &flags);
if (IS_ERR(pid))
return PTR_ERR(pid);
tgid = pid_nr_ns(pid, task_active_pid_ns(current));
aux->task.pid = tgid;
put_pid(pid);
}
return 0;
}
static const struct seq_operations task_seq_ops = {
.start = task_seq_start,
.next = task_seq_next,
.stop = task_seq_stop,
.show = task_seq_show,
};
struct bpf_iter_seq_task_file_info {
/* The first field must be struct bpf_iter_seq_task_common.
* this is assumed by {init, fini}_seq_pidns() callback functions.
*/
struct bpf_iter_seq_task_common common;
struct task_struct *task;
u32 tid;
u32 fd;
};
static struct file *
task_file_seq_get_next(struct bpf_iter_seq_task_file_info *info)
{
u32 saved_tid = info->tid;
struct task_struct *curr_task;
unsigned int curr_fd = info->fd;
/* If this function returns a non-NULL file object,
* it held a reference to the task/file.
* Otherwise, it does not hold any reference.
*/
again:
if (info->task) {
curr_task = info->task;
curr_fd = info->fd;
} else {
curr_task = task_seq_get_next(&info->common, &info->tid, true);
if (!curr_task) {
info->task = NULL;
return NULL;
}
/* set info->task */
info->task = curr_task;
if (saved_tid == info->tid)
curr_fd = info->fd;
else
curr_fd = 0;
}
rcu_read_lock();
for (;; curr_fd++) {
struct file *f;
f = task_lookup_next_fdget_rcu(curr_task, &curr_fd);
if (!f)
break;
/* set info->fd */
info->fd = curr_fd;
rcu_read_unlock();
return f;
}
/* the current task is done, go to the next task */
rcu_read_unlock();
put_task_struct(curr_task);
if (info->common.type == BPF_TASK_ITER_TID) {
info->task = NULL;
return NULL;
}
info->task = NULL;
info->fd = 0;
saved_tid = ++(info->tid);
goto again;
}
static void *task_file_seq_start(struct seq_file *seq, loff_t *pos)
{
struct bpf_iter_seq_task_file_info *info = seq->private;
struct file *file;
info->task = NULL;
file = task_file_seq_get_next(info);
if (file && *pos == 0)
++*pos;
return file;
}
static void *task_file_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_iter_seq_task_file_info *info = seq->private;
++*pos;
++info->fd;
fput((struct file *)v);
return task_file_seq_get_next(info);
}
struct bpf_iter__task_file {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct task_struct *, task);
u32 fd __aligned(8);
__bpf_md_ptr(struct file *, file);
};
DEFINE_BPF_ITER_FUNC(task_file, struct bpf_iter_meta *meta,
struct task_struct *task, u32 fd,
struct file *file)
static int __task_file_seq_show(struct seq_file *seq, struct file *file,
bool in_stop)
{
struct bpf_iter_seq_task_file_info *info = seq->private;
struct bpf_iter__task_file ctx;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, in_stop);
if (!prog)
return 0;
ctx.meta = &meta;
ctx.task = info->task;
ctx.fd = info->fd;
ctx.file = file;
return bpf_iter_run_prog(prog, &ctx);
}
static int task_file_seq_show(struct seq_file *seq, void *v)
{
return __task_file_seq_show(seq, v, false);
}
static void task_file_seq_stop(struct seq_file *seq, void *v)
{
struct bpf_iter_seq_task_file_info *info = seq->private;
if (!v) {
(void)__task_file_seq_show(seq, v, true);
} else {
fput((struct file *)v);
put_task_struct(info->task);
info->task = NULL;
}
}
static int init_seq_pidns(void *priv_data, struct bpf_iter_aux_info *aux)
{
struct bpf_iter_seq_task_common *common = priv_data;
common->ns = get_pid_ns(task_active_pid_ns(current));
common->type = aux->task.type;
common->pid = aux->task.pid;
return 0;
}
static void fini_seq_pidns(void *priv_data)
{
struct bpf_iter_seq_task_common *common = priv_data;
put_pid_ns(common->ns);
}
static const struct seq_operations task_file_seq_ops = {
.start = task_file_seq_start,
.next = task_file_seq_next,
.stop = task_file_seq_stop,
.show = task_file_seq_show,
};
struct bpf_iter_seq_task_vma_info {
/* The first field must be struct bpf_iter_seq_task_common.
* this is assumed by {init, fini}_seq_pidns() callback functions.
*/
struct bpf_iter_seq_task_common common;
struct task_struct *task;
struct mm_struct *mm;
struct vm_area_struct *vma;
u32 tid;
unsigned long prev_vm_start;
unsigned long prev_vm_end;
};
enum bpf_task_vma_iter_find_op {
task_vma_iter_first_vma, /* use find_vma() with addr 0 */
task_vma_iter_next_vma, /* use vma_next() with curr_vma */
task_vma_iter_find_vma, /* use find_vma() to find next vma */
};
static struct vm_area_struct *
task_vma_seq_get_next(struct bpf_iter_seq_task_vma_info *info)
{
enum bpf_task_vma_iter_find_op op;
struct vm_area_struct *curr_vma;
struct task_struct *curr_task;
struct mm_struct *curr_mm;
u32 saved_tid = info->tid;
/* If this function returns a non-NULL vma, it holds a reference to
* the task_struct, holds a refcount on mm->mm_users, and holds
* read lock on vma->mm->mmap_lock.
* If this function returns NULL, it does not hold any reference or
* lock.
*/
if (info->task) {
curr_task = info->task;
curr_vma = info->vma;
curr_mm = info->mm;
/* In case of lock contention, drop mmap_lock to unblock
* the writer.
*
* After relock, call find(mm, prev_vm_end - 1) to find
* new vma to process.
*
* +------+------+-----------+
* | VMA1 | VMA2 | VMA3 |
* +------+------+-----------+
* | | | |
* 4k 8k 16k 400k
*
* For example, curr_vma == VMA2. Before unlock, we set
*
* prev_vm_start = 8k
* prev_vm_end = 16k
*
* There are a few cases:
*
* 1) VMA2 is freed, but VMA3 exists.
*
* find_vma() will return VMA3, just process VMA3.
*
* 2) VMA2 still exists.
*
* find_vma() will return VMA2, process VMA2->next.
*
* 3) no more vma in this mm.
*
* Process the next task.
*
* 4) find_vma() returns a different vma, VMA2'.
*
* 4.1) If VMA2 covers same range as VMA2', skip VMA2',
* because we already covered the range;
* 4.2) VMA2 and VMA2' covers different ranges, process
* VMA2'.
*/
if (mmap_lock_is_contended(curr_mm)) {
info->prev_vm_start = curr_vma->vm_start;
info->prev_vm_end = curr_vma->vm_end;
op = task_vma_iter_find_vma;
mmap_read_unlock(curr_mm);
if (mmap_read_lock_killable(curr_mm)) {
mmput(curr_mm);
goto finish;
}
} else {
op = task_vma_iter_next_vma;
}
} else {
again:
curr_task = task_seq_get_next(&info->common, &info->tid, true);
if (!curr_task) {
info->tid++;
goto finish;
}
if (saved_tid != info->tid) {
/* new task, process the first vma */
op = task_vma_iter_first_vma;
} else {
/* Found the same tid, which means the user space
* finished data in previous buffer and read more.
* We dropped mmap_lock before returning to user
* space, so it is necessary to use find_vma() to
* find the next vma to process.
*/
op = task_vma_iter_find_vma;
}
curr_mm = get_task_mm(curr_task);
if (!curr_mm)
goto next_task;
if (mmap_read_lock_killable(curr_mm)) {
mmput(curr_mm);
goto finish;
}
}
switch (op) {
case task_vma_iter_first_vma:
curr_vma = find_vma(curr_mm, 0);
break;
case task_vma_iter_next_vma:
curr_vma = find_vma(curr_mm, curr_vma->vm_end);
break;
case task_vma_iter_find_vma:
/* We dropped mmap_lock so it is necessary to use find_vma
* to find the next vma. This is similar to the mechanism
* in show_smaps_rollup().
*/
curr_vma = find_vma(curr_mm, info->prev_vm_end - 1);
/* case 1) and 4.2) above just use curr_vma */
/* check for case 2) or case 4.1) above */
if (curr_vma &&
curr_vma->vm_start == info->prev_vm_start &&
curr_vma->vm_end == info->prev_vm_end)
curr_vma = find_vma(curr_mm, curr_vma->vm_end);
break;
}
if (!curr_vma) {
/* case 3) above, or case 2) 4.1) with vma->next == NULL */
mmap_read_unlock(curr_mm);
mmput(curr_mm);
goto next_task;
}
info->task = curr_task;
info->vma = curr_vma;
info->mm = curr_mm;
return curr_vma;
next_task:
if (info->common.type == BPF_TASK_ITER_TID)
goto finish;
put_task_struct(curr_task);
info->task = NULL;
info->mm = NULL;
info->tid++;
goto again;
finish:
if (curr_task)
put_task_struct(curr_task);
info->task = NULL;
info->vma = NULL;
info->mm = NULL;
return NULL;
}
static void *task_vma_seq_start(struct seq_file *seq, loff_t *pos)
{
struct bpf_iter_seq_task_vma_info *info = seq->private;
struct vm_area_struct *vma;
vma = task_vma_seq_get_next(info);
if (vma && *pos == 0)
++*pos;
return vma;
}
static void *task_vma_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct bpf_iter_seq_task_vma_info *info = seq->private;
++*pos;
return task_vma_seq_get_next(info);
}
struct bpf_iter__task_vma {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct task_struct *, task);
__bpf_md_ptr(struct vm_area_struct *, vma);
};
DEFINE_BPF_ITER_FUNC(task_vma, struct bpf_iter_meta *meta,
struct task_struct *task, struct vm_area_struct *vma)
static int __task_vma_seq_show(struct seq_file *seq, bool in_stop)
{
struct bpf_iter_seq_task_vma_info *info = seq->private;
struct bpf_iter__task_vma ctx;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, in_stop);
if (!prog)
return 0;
ctx.meta = &meta;
ctx.task = info->task;
ctx.vma = info->vma;
return bpf_iter_run_prog(prog, &ctx);
}
static int task_vma_seq_show(struct seq_file *seq, void *v)
{
return __task_vma_seq_show(seq, false);
}
static void task_vma_seq_stop(struct seq_file *seq, void *v)
{
struct bpf_iter_seq_task_vma_info *info = seq->private;
if (!v) {
(void)__task_vma_seq_show(seq, true);
} else {
/* info->vma has not been seen by the BPF program. If the
* user space reads more, task_vma_seq_get_next should
* return this vma again. Set prev_vm_start to ~0UL,
* so that we don't skip the vma returned by the next
* find_vma() (case task_vma_iter_find_vma in
* task_vma_seq_get_next()).
*/
info->prev_vm_start = ~0UL;
info->prev_vm_end = info->vma->vm_end;
mmap_read_unlock(info->mm);
mmput(info->mm);
info->mm = NULL;
put_task_struct(info->task);
info->task = NULL;
}
}
static const struct seq_operations task_vma_seq_ops = {
.start = task_vma_seq_start,
.next = task_vma_seq_next,
.stop = task_vma_seq_stop,
.show = task_vma_seq_show,
};
static const struct bpf_iter_seq_info task_seq_info = {
.seq_ops = &task_seq_ops,
.init_seq_private = init_seq_pidns,
.fini_seq_private = fini_seq_pidns,
.seq_priv_size = sizeof(struct bpf_iter_seq_task_info),
};
static int bpf_iter_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info)
{
switch (aux->task.type) {
case BPF_TASK_ITER_TID:
info->iter.task.tid = aux->task.pid;
break;
case BPF_TASK_ITER_TGID:
info->iter.task.pid = aux->task.pid;
break;
default:
break;
}
return 0;
}
static void bpf_iter_task_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq)
{
seq_printf(seq, "task_type:\t%s\n", iter_task_type_names[aux->task.type]);
if (aux->task.type == BPF_TASK_ITER_TID)
seq_printf(seq, "tid:\t%u\n", aux->task.pid);
else if (aux->task.type == BPF_TASK_ITER_TGID)
seq_printf(seq, "pid:\t%u\n", aux->task.pid);
}
static struct bpf_iter_reg task_reg_info = {
.target = "task",
.attach_target = bpf_iter_attach_task,
.feature = BPF_ITER_RESCHED,
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__task, task),
PTR_TO_BTF_ID_OR_NULL },
},
.seq_info = &task_seq_info,
.fill_link_info = bpf_iter_fill_link_info,
.show_fdinfo = bpf_iter_task_show_fdinfo,
};
static const struct bpf_iter_seq_info task_file_seq_info = {
.seq_ops = &task_file_seq_ops,
.init_seq_private = init_seq_pidns,
.fini_seq_private = fini_seq_pidns,
.seq_priv_size = sizeof(struct bpf_iter_seq_task_file_info),
};
static struct bpf_iter_reg task_file_reg_info = {
.target = "task_file",
.attach_target = bpf_iter_attach_task,
.feature = BPF_ITER_RESCHED,
.ctx_arg_info_size = 2,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__task_file, task),
PTR_TO_BTF_ID_OR_NULL },
{ offsetof(struct bpf_iter__task_file, file),
PTR_TO_BTF_ID_OR_NULL },
},
.seq_info = &task_file_seq_info,
.fill_link_info = bpf_iter_fill_link_info,
.show_fdinfo = bpf_iter_task_show_fdinfo,
};
static const struct bpf_iter_seq_info task_vma_seq_info = {
.seq_ops = &task_vma_seq_ops,
.init_seq_private = init_seq_pidns,
.fini_seq_private = fini_seq_pidns,
.seq_priv_size = sizeof(struct bpf_iter_seq_task_vma_info),
};
static struct bpf_iter_reg task_vma_reg_info = {
.target = "task_vma",
.attach_target = bpf_iter_attach_task,
.feature = BPF_ITER_RESCHED,
.ctx_arg_info_size = 2,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__task_vma, task),
PTR_TO_BTF_ID_OR_NULL },
{ offsetof(struct bpf_iter__task_vma, vma),
PTR_TO_BTF_ID_OR_NULL },
},
.seq_info = &task_vma_seq_info,
.fill_link_info = bpf_iter_fill_link_info,
.show_fdinfo = bpf_iter_task_show_fdinfo,
};
BPF_CALL_5(bpf_find_vma, struct task_struct *, task, u64, start,
bpf_callback_t, callback_fn, void *, callback_ctx, u64, flags)
{
struct mmap_unlock_irq_work *work = NULL;
struct vm_area_struct *vma;
bool irq_work_busy = false;
struct mm_struct *mm;
int ret = -ENOENT;
if (flags)
return -EINVAL;
if (!task)
return -ENOENT;
mm = task->mm;
if (!mm)
return -ENOENT;
irq_work_busy = bpf_mmap_unlock_get_irq_work(&work);
if (irq_work_busy || !mmap_read_trylock(mm))
return -EBUSY;
vma = find_vma(mm, start);
if (vma && vma->vm_start <= start && vma->vm_end > start) {
callback_fn((u64)(long)task, (u64)(long)vma,
(u64)(long)callback_ctx, 0, 0);
ret = 0;
}
bpf_mmap_unlock_mm(work, mm);
return ret;
}
const struct bpf_func_proto bpf_find_vma_proto = {
.func = bpf_find_vma,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_BTF_ID,
.arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_FUNC,
.arg4_type = ARG_PTR_TO_STACK_OR_NULL,
.arg5_type = ARG_ANYTHING,
};
DEFINE_PER_CPU(struct mmap_unlock_irq_work, mmap_unlock_work);
static void do_mmap_read_unlock(struct irq_work *entry)
{
struct mmap_unlock_irq_work *work;
if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
return;
work = container_of(entry, struct mmap_unlock_irq_work, irq_work);
mmap_read_unlock_non_owner(work->mm);
}
static int __init task_iter_init(void)
{
struct mmap_unlock_irq_work *work;
int ret, cpu;
for_each_possible_cpu(cpu) {
work = per_cpu_ptr(&mmap_unlock_work, cpu);
init_irq_work(&work->irq_work, do_mmap_read_unlock);
}
task_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
ret = bpf_iter_reg_target(&task_reg_info);
if (ret)
return ret;
task_file_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
task_file_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_FILE];
ret = bpf_iter_reg_target(&task_file_reg_info);
if (ret)
return ret;
task_vma_reg_info.ctx_arg_info[0].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_TASK];
task_vma_reg_info.ctx_arg_info[1].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA];
return bpf_iter_reg_target(&task_vma_reg_info);
}
late_initcall(task_iter_init);