mirror of
git://git.yoctoproject.org/linux-yocto.git
synced 2025-07-05 13:25:20 +02:00

This will add eBPF JIT support to the 32-bit ARCv2 processors. The implementation is qualified by running the BPF tests on a Synopsys HSDK board with "ARC HS38 v2.1c at 500 MHz" as the 4-core CPU. The test_bpf.ko reports 2-10 fold improvements in execution time of its tests. For instance: test_bpf: #33 tcpdump port 22 jited:0 704 1766 2104 PASS test_bpf: #33 tcpdump port 22 jited:1 120 224 260 PASS test_bpf: #141 ALU_DIV_X: 4294967295 / 4294967295 = 1 jited:0 238 PASS test_bpf: #141 ALU_DIV_X: 4294967295 / 4294967295 = 1 jited:1 23 PASS test_bpf: #776 JMP32_JGE_K: all ... magnitudes jited:0 2034681 PASS test_bpf: #776 JMP32_JGE_K: all ... magnitudes jited:1 1020022 PASS Deployment and structure ------------------------ The related codes are added to "arch/arc/net": - bpf_jit.h -- The interface that a back-end translator must provide - bpf_jit_core.c -- Knows how to handle the input eBPF byte stream - bpf_jit_arcv2.c -- The back-end code that knows the translation logic The bpf_int_jit_compile() at the end of bpf_jit_core.c is the entrance to the whole process. Normally, the translation is done in one pass, namely the "normal pass". In case some relocations are not known during this pass, some data (arc_jit_data) is allocated for the next pass to come. This possible next (and last) pass is called the "extra pass". 1. Normal pass # The necessary pass 1a. Dry run # Get the whole JIT length, epilogue offset, etc. 1b. Emit phase # Allocate memory and start emitting instructions 2. Extra pass # Only needed if there are relocations to be fixed 2a. Patch relocations Support status -------------- The JIT compiler supports BPF instructions up to "cpu=v4". However, it does not yet provide support for: - Tail calls - Atomic operations - 64-bit division/remainder - BPF_PROBE_MEM* (exception table) The result of "test_bpf" test suite on an HSDK board is: hsdk-lnx# insmod test_bpf.ko test_suite=test_bpf test_bpf: Summary: 863 PASSED, 186 FAILED, [851/851 JIT'ed] All the failing test cases are due to the ones that were not JIT'ed. Categorically, they can be represented as: .-----------.------------.-------------. | test type | opcodes | # of cases | |-----------+------------+-------------| | atomic | 0xC3, 0xDB | 149 | | div64 | 0x37, 0x3F | 22 | | mod64 | 0x97, 0x9F | 15 | `-----------^------------+-------------| | (total) 186 | `-------------' Setup: build config ------------------- The following configs must be set to have a working JIT test: CONFIG_BPF_JIT=y CONFIG_BPF_JIT_ALWAYS_ON=y CONFIG_TEST_BPF=m The following options are not necessary for the tests module, but are good to have: CONFIG_DEBUG_INFO=y # prerequisite for below CONFIG_DEBUG_INFO_BTF=y # so bpftool can generate vmlinux.h CONFIG_FTRACE=y # CONFIG_BPF_SYSCALL=y # all these options lead to CONFIG_KPROBE_EVENTS=y # having CONFIG_BPF_EVENTS=y CONFIG_PERF_EVENTS=y # Some BPF programs provide data through /sys/kernel/debug: CONFIG_DEBUG_FS=y arc# mount -t debugfs debugfs /sys/kernel/debug Setup: elfutils --------------- The libdw.{so,a} library that is used by pahole for processing the final binary must come from elfutils 0.189 or newer. The support for ARCv2 [1] has been added since that version. [1] https://sourceware.org/git/?p=elfutils.git;a=commit;h=de3d46b3e7 Setup: pahole ------------- The line below in linux/scripts/Makefile.btf must be commented out: pahole-flags-$(call test-ge, $(pahole-ver), 121) += --btf_gen_floats Or else, the build will fail: $ make V=1 ... BTF .btf.vmlinux.bin.o pahole -J --btf_gen_floats \ -j --lang_exclude=rust \ --skip_encoding_btf_inconsistent_proto \ --btf_gen_optimized .tmp_vmlinux.btf Complex, interval and imaginary float types are not supported Encountered error while encoding BTF. ... BTFIDS vmlinux ./tools/bpf/resolve_btfids/resolve_btfids vmlinux libbpf: failed to find '.BTF' ELF section in vmlinux FAILED: load BTF from vmlinux: No data available This is due to the fact that the ARC toolchains generate "complex float" DIE entries in libgcc and at the moment, pahole can't handle such entries. Running the tests ----------------- host$ scp /bld/linux/lib/test_bpf.ko arc: arc # sysctl net.core.bpf_jit_enable=1 arc # insmod test_bpf.ko test_suite=test_bpf ... test_bpf: #1048 Staggered jumps: JMP32_JSLE_X jited:1 697811 PASS test_bpf: Summary: 863 PASSED, 186 FAILED, [851/851 JIT'ed] Acknowledgments --------------- - Claudiu Zissulescu for his unwavering support - Yuriy Kolerov for testing and troubleshooting - Vladimir Isaev for the pahole workaround - Sergey Matyukevich for paving the road by adding the interpreter support Signed-off-by: Shahab Vahedi <shahab@synopsys.com> Link: https://lore.kernel.org/r/20240430145604.38592-1-list+bpf@vahedi.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
1426 lines
38 KiB
C
1426 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* The back-end-agnostic part of Just-In-Time compiler for eBPF bytecode.
|
|
*
|
|
* Copyright (c) 2024 Synopsys Inc.
|
|
* Author: Shahab Vahedi <shahab@synopsys.com>
|
|
*/
|
|
#include <linux/bug.h>
|
|
#include "bpf_jit.h"
|
|
|
|
/*
|
|
* Check for the return value. A pattern used often in this file.
|
|
* There must be a "ret" variable of type "int" in the scope.
|
|
*/
|
|
#define CHECK_RET(cmd) \
|
|
do { \
|
|
ret = (cmd); \
|
|
if (ret < 0) \
|
|
return ret; \
|
|
} while (0)
|
|
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
/* Dumps bytes in /var/log/messages at KERN_INFO level (4). */
|
|
static void dump_bytes(const u8 *buf, u32 len, const char *header)
|
|
{
|
|
u8 line[64];
|
|
size_t i, j;
|
|
|
|
pr_info("-----------------[ %s ]-----------------\n", header);
|
|
|
|
for (i = 0, j = 0; i < len; i++) {
|
|
/* Last input byte? */
|
|
if (i == len - 1) {
|
|
j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
|
|
pr_info("%s\n", line);
|
|
break;
|
|
}
|
|
/* End of line? */
|
|
else if (i % 8 == 7) {
|
|
j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
|
|
pr_info("%s\n", line);
|
|
j = 0;
|
|
} else {
|
|
j += scnprintf(line + j, 64 - j, "0x%02x, ", buf[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif /* ARC_BPF_JIT_DEBUG */
|
|
|
|
/********************* JIT context ***********************/
|
|
|
|
/*
|
|
* buf: Translated instructions end up here.
|
|
* len: The length of whole block in bytes.
|
|
* index: The offset at which the _next_ instruction may be put.
|
|
*/
|
|
struct jit_buffer {
|
|
u8 *buf;
|
|
u32 len;
|
|
u32 index;
|
|
};
|
|
|
|
/*
|
|
* This is a subset of "struct jit_context" that its information is deemed
|
|
* necessary for the next extra pass to come.
|
|
*
|
|
* bpf_header: Needed to finally lock the region.
|
|
* bpf2insn: Used to find the translation for instructions of interest.
|
|
*
|
|
* Things like "jit.buf" and "jit.len" can be retrieved respectively from
|
|
* "prog->bpf_func" and "prog->jited_len".
|
|
*/
|
|
struct arc_jit_data {
|
|
struct bpf_binary_header *bpf_header;
|
|
u32 *bpf2insn;
|
|
};
|
|
|
|
/*
|
|
* The JIT pertinent context that is used by different functions.
|
|
*
|
|
* prog: The current eBPF program being handled.
|
|
* orig_prog: The original eBPF program before any possible change.
|
|
* jit: The JIT buffer and its length.
|
|
* bpf_header: The JITed program header. "jit.buf" points inside it.
|
|
* emit: If set, opcodes are written to memory; else, a dry-run.
|
|
* do_zext: If true, 32-bit sub-regs must be zero extended.
|
|
* bpf2insn: Maps BPF insn indices to their counterparts in jit.buf.
|
|
* bpf2insn_valid: Indicates if "bpf2ins" is populated with the mappings.
|
|
* jit_data: A piece of memory to transfer data to the next pass.
|
|
* arc_regs_clobbered: Each bit status determines if that arc reg is clobbered.
|
|
* save_blink: Whether ARC's "blink" register needs to be saved.
|
|
* frame_size: Derived from "prog->aux->stack_depth".
|
|
* epilogue_offset: Used by early "return"s in the code to jump here.
|
|
* need_extra_pass: A forecast if an "extra_pass" will occur.
|
|
* is_extra_pass: Indicates if the current pass is an extra pass.
|
|
* user_bpf_prog: True, if VM opcodes come from a real program.
|
|
* blinded: True if "constant blinding" step returned a new "prog".
|
|
* success: Indicates if the whole JIT went OK.
|
|
*/
|
|
struct jit_context {
|
|
struct bpf_prog *prog;
|
|
struct bpf_prog *orig_prog;
|
|
struct jit_buffer jit;
|
|
struct bpf_binary_header *bpf_header;
|
|
bool emit;
|
|
bool do_zext;
|
|
u32 *bpf2insn;
|
|
bool bpf2insn_valid;
|
|
struct arc_jit_data *jit_data;
|
|
u32 arc_regs_clobbered;
|
|
bool save_blink;
|
|
u16 frame_size;
|
|
u32 epilogue_offset;
|
|
bool need_extra_pass;
|
|
bool is_extra_pass;
|
|
bool user_bpf_prog;
|
|
bool blinded;
|
|
bool success;
|
|
};
|
|
|
|
/*
|
|
* If we're in ARC_BPF_JIT_DEBUG mode and the debug level is right, dump the
|
|
* input BPF stream. "bpf_jit_dump()" is not fully suited for this purpose.
|
|
*/
|
|
static void vm_dump(const struct bpf_prog *prog)
|
|
{
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
if (bpf_jit_enable > 1)
|
|
dump_bytes((u8 *)prog->insns, 8 * prog->len, " VM ");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If the right level of debug is set, dump the bytes. There are 2 variants
|
|
* of this function:
|
|
*
|
|
* 1. Use the standard bpf_jit_dump() which is meant only for JITed code.
|
|
* 2. Use the dump_bytes() to match its "vm_dump()" instance.
|
|
*/
|
|
static void jit_dump(const struct jit_context *ctx)
|
|
{
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
u8 header[8];
|
|
#endif
|
|
const int pass = ctx->is_extra_pass ? 2 : 1;
|
|
|
|
if (bpf_jit_enable <= 1 || !ctx->prog->jited)
|
|
return;
|
|
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
scnprintf(header, sizeof(header), "JIT:%d", pass);
|
|
dump_bytes(ctx->jit.buf, ctx->jit.len, header);
|
|
pr_info("\n");
|
|
#else
|
|
bpf_jit_dump(ctx->prog->len, ctx->jit.len, pass, ctx->jit.buf);
|
|
#endif
|
|
}
|
|
|
|
/* Initialise the context so there's no garbage. */
|
|
static int jit_ctx_init(struct jit_context *ctx, struct bpf_prog *prog)
|
|
{
|
|
memset(ctx, 0, sizeof(ctx));
|
|
|
|
ctx->orig_prog = prog;
|
|
|
|
/* If constant blinding was requested but failed, scram. */
|
|
ctx->prog = bpf_jit_blind_constants(prog);
|
|
if (IS_ERR(ctx->prog))
|
|
return PTR_ERR(ctx->prog);
|
|
ctx->blinded = (ctx->prog == ctx->orig_prog ? false : true);
|
|
|
|
/* If the verifier doesn't zero-extend, then we have to do it. */
|
|
ctx->do_zext = !ctx->prog->aux->verifier_zext;
|
|
|
|
ctx->is_extra_pass = ctx->prog->jited;
|
|
ctx->user_bpf_prog = ctx->prog->is_func;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only after the first iteration of normal pass (the dry-run),
|
|
* there are valid offsets in ctx->bpf2insn array.
|
|
*/
|
|
static inline bool offsets_available(const struct jit_context *ctx)
|
|
{
|
|
return ctx->bpf2insn_valid;
|
|
}
|
|
|
|
/*
|
|
* "*mem" should be freed when there is no "extra pass" to come,
|
|
* or the compilation terminated abruptly. A few of such memory
|
|
* allocations are: ctx->jit_data and ctx->bpf2insn.
|
|
*/
|
|
static inline void maybe_free(struct jit_context *ctx, void **mem)
|
|
{
|
|
if (*mem) {
|
|
if (!ctx->success || !ctx->need_extra_pass) {
|
|
kfree(*mem);
|
|
*mem = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free memories based on the status of the context.
|
|
*
|
|
* A note about "bpf_header": On successful runs, "bpf_header" is
|
|
* not freed, because "jit.buf", a sub-array of it, is returned as
|
|
* the "bpf_func". However, "bpf_header" is lost and nothing points
|
|
* to it. This should not cause a leakage, because apparently
|
|
* "bpf_header" can be revived by "bpf_jit_binary_hdr()". This is
|
|
* how "bpf_jit_free()" in "kernel/bpf/core.c" releases the memory.
|
|
*/
|
|
static void jit_ctx_cleanup(struct jit_context *ctx)
|
|
{
|
|
if (ctx->blinded) {
|
|
/* if all went well, release the orig_prog. */
|
|
if (ctx->success)
|
|
bpf_jit_prog_release_other(ctx->prog, ctx->orig_prog);
|
|
else
|
|
bpf_jit_prog_release_other(ctx->orig_prog, ctx->prog);
|
|
}
|
|
|
|
maybe_free(ctx, (void **)&ctx->bpf2insn);
|
|
maybe_free(ctx, (void **)&ctx->jit_data);
|
|
|
|
if (!ctx->bpf2insn)
|
|
ctx->bpf2insn_valid = false;
|
|
|
|
/* Freeing "bpf_header" is enough. "jit.buf" is a sub-array of it. */
|
|
if (!ctx->success && ctx->bpf_header) {
|
|
bpf_jit_binary_free(ctx->bpf_header);
|
|
ctx->bpf_header = NULL;
|
|
ctx->jit.buf = NULL;
|
|
ctx->jit.index = 0;
|
|
ctx->jit.len = 0;
|
|
}
|
|
|
|
ctx->emit = false;
|
|
ctx->do_zext = false;
|
|
}
|
|
|
|
/*
|
|
* Analyse the register usage and record the frame size.
|
|
* The register usage is determined by consulting the back-end.
|
|
*/
|
|
static void analyze_reg_usage(struct jit_context *ctx)
|
|
{
|
|
size_t i;
|
|
u32 usage = 0;
|
|
const struct bpf_insn *insn = ctx->prog->insnsi;
|
|
|
|
for (i = 0; i < ctx->prog->len; i++) {
|
|
u8 bpf_reg;
|
|
bool call;
|
|
|
|
bpf_reg = insn[i].dst_reg;
|
|
call = (insn[i].code == (BPF_JMP | BPF_CALL)) ? true : false;
|
|
usage |= mask_for_used_regs(bpf_reg, call);
|
|
}
|
|
|
|
ctx->arc_regs_clobbered = usage;
|
|
ctx->frame_size = ctx->prog->aux->stack_depth;
|
|
}
|
|
|
|
/* Verify that no instruction will be emitted when there is no buffer. */
|
|
static inline int jit_buffer_check(const struct jit_context *ctx)
|
|
{
|
|
if (ctx->emit) {
|
|
if (!ctx->jit.buf) {
|
|
pr_err("bpf-jit: inconsistence state; no "
|
|
"buffer to emit instructions.\n");
|
|
return -EINVAL;
|
|
} else if (ctx->jit.index > ctx->jit.len) {
|
|
pr_err("bpf-jit: estimated JIT length is less "
|
|
"than the emitted instructions.\n");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* On a dry-run (emit=false), "jit.len" is growing gradually. */
|
|
static inline void jit_buffer_update(struct jit_context *ctx, u32 n)
|
|
{
|
|
if (!ctx->emit)
|
|
ctx->jit.len += n;
|
|
else
|
|
ctx->jit.index += n;
|
|
}
|
|
|
|
/* Based on "emit", determine the address where instructions are emitted. */
|
|
static inline u8 *effective_jit_buf(const struct jit_context *ctx)
|
|
{
|
|
return ctx->emit ? (ctx->jit.buf + ctx->jit.index) : NULL;
|
|
}
|
|
|
|
/* Prologue based on context variables set by "analyze_reg_usage()". */
|
|
static int handle_prologue(struct jit_context *ctx)
|
|
{
|
|
int ret;
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
u32 len = 0;
|
|
|
|
CHECK_RET(jit_buffer_check(ctx));
|
|
|
|
len = arc_prologue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
|
|
jit_buffer_update(ctx, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The counter part for "handle_prologue()". */
|
|
static int handle_epilogue(struct jit_context *ctx)
|
|
{
|
|
int ret;
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
u32 len = 0;
|
|
|
|
CHECK_RET(jit_buffer_check(ctx));
|
|
|
|
len = arc_epilogue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
|
|
jit_buffer_update(ctx, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Tell which number of the BPF instruction we are dealing with. */
|
|
static inline s32 get_index_for_insn(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
return (insn - ctx->prog->insnsi);
|
|
}
|
|
|
|
/*
|
|
* In most of the cases, the "offset" is read from "insn->off". However,
|
|
* if it is an unconditional BPF_JMP32, then it comes from "insn->imm".
|
|
*
|
|
* (Courtesy of "cpu=v4" support)
|
|
*/
|
|
static inline s32 get_offset(const struct bpf_insn *insn)
|
|
{
|
|
if ((BPF_CLASS(insn->code) == BPF_JMP32) &&
|
|
(BPF_OP(insn->code) == BPF_JA))
|
|
return insn->imm;
|
|
else
|
|
return insn->off;
|
|
}
|
|
|
|
/*
|
|
* Determine to which number of the BPF instruction we're jumping to.
|
|
*
|
|
* The "offset" is interpreted as the "number" of BPF instructions
|
|
* from the _next_ BPF instruction. e.g.:
|
|
*
|
|
* 4 means 4 instructions after the next insn
|
|
* 0 means 0 instructions after the next insn -> fallthrough.
|
|
* -1 means 1 instruction before the next insn -> jmp to current insn.
|
|
*
|
|
* Another way to look at this, "offset" is the number of instructions
|
|
* that exist between the current instruction and the target instruction.
|
|
*
|
|
* It is worth noting that a "mov r,i64", which is 16-byte long, is
|
|
* treated as two instructions long, therefore "offset" needn't be
|
|
* treated specially for those. Everything is uniform.
|
|
*/
|
|
static inline s32 get_target_index_for_insn(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
return (get_index_for_insn(ctx, insn) + 1) + get_offset(insn);
|
|
}
|
|
|
|
/* Is there an immediate operand encoded in the "insn"? */
|
|
static inline bool has_imm(const struct bpf_insn *insn)
|
|
{
|
|
return BPF_SRC(insn->code) == BPF_K;
|
|
}
|
|
|
|
/* Is the last BPF instruction? */
|
|
static inline bool is_last_insn(const struct bpf_prog *prog, u32 idx)
|
|
{
|
|
return idx == (prog->len - 1);
|
|
}
|
|
|
|
/*
|
|
* Invocation of this function, conditionally signals the need for
|
|
* an extra pass. The conditions that must be met are:
|
|
*
|
|
* 1. The current pass itself shouldn't be an extra pass.
|
|
* 2. The stream of bytes being JITed must come from a user program.
|
|
*/
|
|
static inline void set_need_for_extra_pass(struct jit_context *ctx)
|
|
{
|
|
if (!ctx->is_extra_pass)
|
|
ctx->need_extra_pass = ctx->user_bpf_prog;
|
|
}
|
|
|
|
/*
|
|
* Check if the "size" is valid and then transfer the control to
|
|
* the back-end for the swap.
|
|
*/
|
|
static int handle_swap(u8 *buf, u8 rd, u8 size, u8 endian,
|
|
bool force, bool do_zext, u8 *len)
|
|
{
|
|
/* Sanity check on the size. */
|
|
switch (size) {
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
break;
|
|
default:
|
|
pr_err("bpf-jit: invalid size for swap.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*len = gen_swap(buf, rd, size, endian, force, do_zext);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Checks if the (instruction) index is in valid range. */
|
|
static inline bool check_insn_idx_valid(const struct jit_context *ctx,
|
|
const s32 idx)
|
|
{
|
|
return (idx >= 0 && idx < ctx->prog->len);
|
|
}
|
|
|
|
/*
|
|
* Decouple the back-end from BPF by converting BPF conditions
|
|
* to internal enum. ARC_CC_* start from 0 and are used as index
|
|
* to an array. BPF_J* usage must end after this conversion.
|
|
*/
|
|
static int bpf_cond_to_arc(const u8 op, u8 *arc_cc)
|
|
{
|
|
switch (op) {
|
|
case BPF_JA:
|
|
*arc_cc = ARC_CC_AL;
|
|
break;
|
|
case BPF_JEQ:
|
|
*arc_cc = ARC_CC_EQ;
|
|
break;
|
|
case BPF_JGT:
|
|
*arc_cc = ARC_CC_UGT;
|
|
break;
|
|
case BPF_JGE:
|
|
*arc_cc = ARC_CC_UGE;
|
|
break;
|
|
case BPF_JSET:
|
|
*arc_cc = ARC_CC_SET;
|
|
break;
|
|
case BPF_JNE:
|
|
*arc_cc = ARC_CC_NE;
|
|
break;
|
|
case BPF_JSGT:
|
|
*arc_cc = ARC_CC_SGT;
|
|
break;
|
|
case BPF_JSGE:
|
|
*arc_cc = ARC_CC_SGE;
|
|
break;
|
|
case BPF_JLT:
|
|
*arc_cc = ARC_CC_ULT;
|
|
break;
|
|
case BPF_JLE:
|
|
*arc_cc = ARC_CC_ULE;
|
|
break;
|
|
case BPF_JSLT:
|
|
*arc_cc = ARC_CC_SLT;
|
|
break;
|
|
case BPF_JSLE:
|
|
*arc_cc = ARC_CC_SLE;
|
|
break;
|
|
default:
|
|
pr_err("bpf-jit: can't handle condition 0x%02X\n", op);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check a few things for a supposedly "jump" instruction:
|
|
*
|
|
* 0. "insn" is a "jump" instruction, but not the "call/exit" variant.
|
|
* 1. The current "insn" index is in valid range.
|
|
* 2. The index of target instruction is in valid range.
|
|
*/
|
|
static int check_bpf_jump(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
const u8 class = BPF_CLASS(insn->code);
|
|
const u8 op = BPF_OP(insn->code);
|
|
|
|
/* Must be a jmp(32) instruction that is not a "call/exit". */
|
|
if ((class != BPF_JMP && class != BPF_JMP32) ||
|
|
(op == BPF_CALL || op == BPF_EXIT)) {
|
|
pr_err("bpf-jit: not a jump instruction.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!check_insn_idx_valid(ctx, get_index_for_insn(ctx, insn))) {
|
|
pr_err("bpf-jit: the bpf jump insn is not in prog.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!check_insn_idx_valid(ctx, get_target_index_for_insn(ctx, insn))) {
|
|
pr_err("bpf-jit: bpf jump label is out of range.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Based on input "insn", consult "ctx->bpf2insn" to get the
|
|
* related index (offset) of the translation in JIT stream.
|
|
*/
|
|
static u32 get_curr_jit_off(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
const s32 idx = get_index_for_insn(ctx, insn);
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, idx));
|
|
#endif
|
|
return ctx->bpf2insn[idx];
|
|
}
|
|
|
|
/*
|
|
* The input "insn" must be a jump instruction.
|
|
*
|
|
* Based on input "insn", consult "ctx->bpf2insn" to get the
|
|
* related JIT index (offset) of "target instruction" that
|
|
* "insn" would jump to.
|
|
*/
|
|
static u32 get_targ_jit_off(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn)
|
|
{
|
|
const s32 tidx = get_target_index_for_insn(ctx, insn);
|
|
#ifdef ARC_BPF_JIT_DEBUG
|
|
BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, tidx));
|
|
#endif
|
|
return ctx->bpf2insn[tidx];
|
|
}
|
|
|
|
/*
|
|
* This function will return 0 for a feasible jump.
|
|
*
|
|
* Consult the back-end to check if it finds it feasible to emit
|
|
* the necessary instructions based on "cond" and the displacement
|
|
* between the "from_off" and the "to_off".
|
|
*/
|
|
static int feasible_jit_jump(u32 from_off, u32 to_off, u8 cond, bool j32)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (j32) {
|
|
if (!check_jmp_32(from_off, to_off, cond))
|
|
ret = -EFAULT;
|
|
} else {
|
|
if (!check_jmp_64(from_off, to_off, cond))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
if (ret != 0)
|
|
pr_err("bpf-jit: the JIT displacement is not OK.\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This jump handler performs the following steps:
|
|
*
|
|
* 1. Compute ARC's internal condition code from BPF's
|
|
* 2. Determine the bitness of the operation (32 vs. 64)
|
|
* 3. Sanity check on BPF stream
|
|
* 4. Sanity check on what is supposed to be JIT's displacement
|
|
* 5. And finally, emit the necessary instructions
|
|
*
|
|
* The last two steps are performed through the back-end.
|
|
* The value of steps 1 and 2 are necessary inputs for the back-end.
|
|
*/
|
|
static int handle_jumps(const struct jit_context *ctx,
|
|
const struct bpf_insn *insn,
|
|
u8 *len)
|
|
{
|
|
u8 cond;
|
|
int ret = 0;
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
const bool j32 = (BPF_CLASS(insn->code) == BPF_JMP32) ? true : false;
|
|
const u8 rd = insn->dst_reg;
|
|
u8 rs = insn->src_reg;
|
|
u32 curr_off = 0, targ_off = 0;
|
|
|
|
*len = 0;
|
|
|
|
/* Map the BPF condition to internal enum. */
|
|
CHECK_RET(bpf_cond_to_arc(BPF_OP(insn->code), &cond));
|
|
|
|
/* Sanity check on the BPF byte stream. */
|
|
CHECK_RET(check_bpf_jump(ctx, insn));
|
|
|
|
/*
|
|
* Move the immediate into a temporary register _now_ for 2 reasons:
|
|
*
|
|
* 1. "gen_jmp_{32,64}()" deal with operands in registers.
|
|
*
|
|
* 2. The "len" parameter will grow so that the current jit offset
|
|
* (curr_off) will have increased to a point where the necessary
|
|
* instructions can be inserted by "gen_jmp_{32,64}()".
|
|
*/
|
|
if (has_imm(insn) && cond != ARC_CC_AL) {
|
|
if (j32) {
|
|
*len += mov_r32_i32(BUF(buf, *len), JIT_REG_TMP,
|
|
insn->imm);
|
|
} else {
|
|
*len += mov_r64_i32(BUF(buf, *len), JIT_REG_TMP,
|
|
insn->imm);
|
|
}
|
|
rs = JIT_REG_TMP;
|
|
}
|
|
|
|
/* If the offsets are known, check if the branch can occur. */
|
|
if (offsets_available(ctx)) {
|
|
curr_off = get_curr_jit_off(ctx, insn) + *len;
|
|
targ_off = get_targ_jit_off(ctx, insn);
|
|
|
|
/* Sanity check on the back-end side. */
|
|
CHECK_RET(feasible_jit_jump(curr_off, targ_off, cond, j32));
|
|
}
|
|
|
|
if (j32) {
|
|
*len += gen_jmp_32(BUF(buf, *len), rd, rs, cond,
|
|
curr_off, targ_off);
|
|
} else {
|
|
*len += gen_jmp_64(BUF(buf, *len), rd, rs, cond,
|
|
curr_off, targ_off);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Jump to translated epilogue address. */
|
|
static int handle_jmp_epilogue(struct jit_context *ctx,
|
|
const struct bpf_insn *insn, u8 *len)
|
|
{
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
u32 curr_off = 0, epi_off = 0;
|
|
|
|
/* Check the offset only if the data is available. */
|
|
if (offsets_available(ctx)) {
|
|
curr_off = get_curr_jit_off(ctx, insn);
|
|
epi_off = ctx->epilogue_offset;
|
|
|
|
if (!check_jmp_64(curr_off, epi_off, ARC_CC_AL)) {
|
|
pr_err("bpf-jit: epilogue offset is not valid.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Jump to "epilogue offset" (rd and rs don't matter). */
|
|
*len = gen_jmp_64(buf, 0, 0, ARC_CC_AL, curr_off, epi_off);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Try to get the resolved address and generate the instructions. */
|
|
static int handle_call(struct jit_context *ctx,
|
|
const struct bpf_insn *insn,
|
|
u8 *len)
|
|
{
|
|
int ret;
|
|
bool in_kernel_func, fixed = false;
|
|
u64 addr = 0;
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
|
|
ret = bpf_jit_get_func_addr(ctx->prog, insn, ctx->is_extra_pass,
|
|
&addr, &fixed);
|
|
if (ret < 0) {
|
|
pr_err("bpf-jit: can't get the address for call.\n");
|
|
return ret;
|
|
}
|
|
in_kernel_func = (fixed ? true : false);
|
|
|
|
/* No valuable address retrieved (yet). */
|
|
if (!fixed && !addr)
|
|
set_need_for_extra_pass(ctx);
|
|
|
|
*len = gen_func_call(buf, (ARC_ADDR)addr, in_kernel_func);
|
|
|
|
if (insn->src_reg != BPF_PSEUDO_CALL) {
|
|
/* Assigning ABI's return reg to JIT's return reg. */
|
|
*len += arc_to_bpf_return(BUF(buf, *len));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to generate instructions for loading a 64-bit immediate.
|
|
* These sort of instructions are usually associated with the 64-bit
|
|
* relocations: R_BPF_64_64. Therefore, signal the need for an extra
|
|
* pass if the circumstances are right.
|
|
*/
|
|
static int handle_ld_imm64(struct jit_context *ctx,
|
|
const struct bpf_insn *insn,
|
|
u8 *len)
|
|
{
|
|
const s32 idx = get_index_for_insn(ctx, insn);
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
|
|
/* We're about to consume 2 VM instructions. */
|
|
if (is_last_insn(ctx->prog, idx)) {
|
|
pr_err("bpf-jit: need more data for 64-bit immediate.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*len = mov_r64_i64(buf, insn->dst_reg, insn->imm, (insn + 1)->imm);
|
|
|
|
if (bpf_pseudo_func(insn))
|
|
set_need_for_extra_pass(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handles one eBPF instruction at a time. To make this function faster,
|
|
* it does not call "jit_buffer_check()". Else, it would call it for every
|
|
* instruction. As a result, it should not be invoked directly. Only
|
|
* "handle_body()", that has already executed the "check", may call this
|
|
* function.
|
|
*
|
|
* If the "ret" value is negative, something has went wrong. Else,
|
|
* it mostly holds the value 0 and rarely 1. Number 1 signals
|
|
* the loop in "handle_body()" to skip the next instruction, because
|
|
* it has been consumed as part of a 64-bit immediate value.
|
|
*/
|
|
static int handle_insn(struct jit_context *ctx, u32 idx)
|
|
{
|
|
const struct bpf_insn *insn = &ctx->prog->insnsi[idx];
|
|
const u8 code = insn->code;
|
|
const u8 dst = insn->dst_reg;
|
|
const u8 src = insn->src_reg;
|
|
const s16 off = insn->off;
|
|
const s32 imm = insn->imm;
|
|
u8 *buf = effective_jit_buf(ctx);
|
|
u8 len = 0;
|
|
int ret = 0;
|
|
|
|
switch (code) {
|
|
/* dst += src (32-bit) */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
len = add_r32(buf, dst, src);
|
|
break;
|
|
/* dst += imm (32-bit) */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
len = add_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst -= src (32-bit) */
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
len = sub_r32(buf, dst, src);
|
|
break;
|
|
/* dst -= imm (32-bit) */
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
len = sub_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = -dst (32-bit) */
|
|
case BPF_ALU | BPF_NEG:
|
|
len = neg_r32(buf, dst);
|
|
break;
|
|
/* dst *= src (32-bit) */
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
len = mul_r32(buf, dst, src);
|
|
break;
|
|
/* dst *= imm (32-bit) */
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
len = mul_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst /= src (32-bit) */
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
len = div_r32(buf, dst, src, off == 1);
|
|
break;
|
|
/* dst /= imm (32-bit) */
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
len = div_r32_i32(buf, dst, imm, off == 1);
|
|
break;
|
|
/* dst %= src (32-bit) */
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
len = mod_r32(buf, dst, src, off == 1);
|
|
break;
|
|
/* dst %= imm (32-bit) */
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
len = mod_r32_i32(buf, dst, imm, off == 1);
|
|
break;
|
|
/* dst &= src (32-bit) */
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
len = and_r32(buf, dst, src);
|
|
break;
|
|
/* dst &= imm (32-bit) */
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
len = and_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst |= src (32-bit) */
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
len = or_r32(buf, dst, src);
|
|
break;
|
|
/* dst |= imm (32-bit) */
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
len = or_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst ^= src (32-bit) */
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
len = xor_r32(buf, dst, src);
|
|
break;
|
|
/* dst ^= imm (32-bit) */
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
len = xor_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst <<= src (32-bit) */
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
len = lsh_r32(buf, dst, src);
|
|
break;
|
|
/* dst <<= imm (32-bit) */
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
len = lsh_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst >>= src (32-bit) [unsigned] */
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
len = rsh_r32(buf, dst, src);
|
|
break;
|
|
/* dst >>= imm (32-bit) [unsigned] */
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
len = rsh_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst >>= src (32-bit) [signed] */
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
len = arsh_r32(buf, dst, src);
|
|
break;
|
|
/* dst >>= imm (32-bit) [signed] */
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
len = arsh_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = src (32-bit) */
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
len = mov_r32(buf, dst, src, (u8)off);
|
|
break;
|
|
/* dst = imm32 (32-bit) */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
len = mov_r32_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = swap(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
case BPF_ALU64 | BPF_END | BPF_FROM_LE: {
|
|
CHECK_RET(handle_swap(buf, dst, imm, BPF_SRC(code),
|
|
BPF_CLASS(code) == BPF_ALU64,
|
|
ctx->do_zext, &len));
|
|
break;
|
|
}
|
|
/* dst += src (64-bit) */
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
len = add_r64(buf, dst, src);
|
|
break;
|
|
/* dst += imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
len = add_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst -= src (64-bit) */
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
len = sub_r64(buf, dst, src);
|
|
break;
|
|
/* dst -= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
len = sub_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = -dst (64-bit) */
|
|
case BPF_ALU64 | BPF_NEG:
|
|
len = neg_r64(buf, dst);
|
|
break;
|
|
/* dst *= src (64-bit) */
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
len = mul_r64(buf, dst, src);
|
|
break;
|
|
/* dst *= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
len = mul_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst &= src (64-bit) */
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
len = and_r64(buf, dst, src);
|
|
break;
|
|
/* dst &= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
len = and_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst |= src (64-bit) */
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
len = or_r64(buf, dst, src);
|
|
break;
|
|
/* dst |= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
len = or_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst ^= src (64-bit) */
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
len = xor_r64(buf, dst, src);
|
|
break;
|
|
/* dst ^= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
len = xor_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst <<= src (64-bit) */
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
len = lsh_r64(buf, dst, src);
|
|
break;
|
|
/* dst <<= imm32 (64-bit) */
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
len = lsh_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst >>= src (64-bit) [unsigned] */
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
len = rsh_r64(buf, dst, src);
|
|
break;
|
|
/* dst >>= imm32 (64-bit) [unsigned] */
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
len = rsh_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst >>= src (64-bit) [signed] */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
len = arsh_r64(buf, dst, src);
|
|
break;
|
|
/* dst >>= imm32 (64-bit) [signed] */
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
len = arsh_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = src (64-bit) */
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
len = mov_r64(buf, dst, src, (u8)off);
|
|
break;
|
|
/* dst = imm32 (sign extend to 64-bit) */
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
len = mov_r64_i32(buf, dst, imm);
|
|
break;
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_DW | BPF_IMM:
|
|
CHECK_RET(handle_ld_imm64(ctx, insn, &len));
|
|
/* Tell the loop to skip the next instruction. */
|
|
ret = 1;
|
|
break;
|
|
/* dst = *(size *)(src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
len = load_r(buf, dst, src, off, BPF_SIZE(code), false);
|
|
break;
|
|
case BPF_LDX | BPF_MEMSX | BPF_W:
|
|
case BPF_LDX | BPF_MEMSX | BPF_H:
|
|
case BPF_LDX | BPF_MEMSX | BPF_B:
|
|
len = load_r(buf, dst, src, off, BPF_SIZE(code), true);
|
|
break;
|
|
/* *(size *)(dst + off) = src */
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
len = store_r(buf, src, dst, off, BPF_SIZE(code));
|
|
break;
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
len = store_i(buf, imm, dst, off, BPF_SIZE(code));
|
|
break;
|
|
case BPF_JMP | BPF_JA:
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JA:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
CHECK_RET(handle_jumps(ctx, insn, &len));
|
|
break;
|
|
case BPF_JMP | BPF_CALL:
|
|
CHECK_RET(handle_call(ctx, insn, &len));
|
|
break;
|
|
|
|
case BPF_JMP | BPF_EXIT:
|
|
/* If this is the last instruction, epilogue will follow. */
|
|
if (is_last_insn(ctx->prog, idx))
|
|
break;
|
|
CHECK_RET(handle_jmp_epilogue(ctx, insn, &len));
|
|
break;
|
|
default:
|
|
pr_err("bpf-jit: can't handle instruction code 0x%02X\n", code);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (BPF_CLASS(code) == BPF_ALU) {
|
|
/*
|
|
* Skip the "swap" instructions. Even 64-bit swaps are of type
|
|
* BPF_ALU (and not BPF_ALU64). Therefore, for the swaps, one
|
|
* has to look at the "size" of the operations rather than the
|
|
* ALU type. "gen_swap()" specifically takes care of that.
|
|
*/
|
|
if (BPF_OP(code) != BPF_END && ctx->do_zext)
|
|
len += zext(BUF(buf, len), dst);
|
|
}
|
|
|
|
jit_buffer_update(ctx, len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int handle_body(struct jit_context *ctx)
|
|
{
|
|
int ret;
|
|
bool populate_bpf2insn = false;
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
|
|
CHECK_RET(jit_buffer_check(ctx));
|
|
|
|
/*
|
|
* Record the mapping for the instructions during the dry-run.
|
|
* Doing it this way allows us to have the mapping ready for
|
|
* the jump instructions during the real compilation phase.
|
|
*/
|
|
if (!ctx->emit)
|
|
populate_bpf2insn = true;
|
|
|
|
for (u32 i = 0; i < prog->len; i++) {
|
|
/* During the dry-run, jit.len grows gradually per BPF insn. */
|
|
if (populate_bpf2insn)
|
|
ctx->bpf2insn[i] = ctx->jit.len;
|
|
|
|
CHECK_RET(handle_insn(ctx, i));
|
|
if (ret > 0) {
|
|
/* "ret" is 1 if two (64-bit) chunks were consumed. */
|
|
ctx->bpf2insn[i + 1] = ctx->bpf2insn[i];
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* If bpf2insn had to be populated, then it is done at this point. */
|
|
if (populate_bpf2insn)
|
|
ctx->bpf2insn_valid = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the memory with "unimp_s" which is the mnemonic for
|
|
* "unimplemented" instruction and always raises an exception.
|
|
*
|
|
* The instruction is 2 bytes. If "size" is odd, there is not much
|
|
* that can be done about the last byte in "area". Because, the
|
|
* CPU always fetches instructions in two bytes. Therefore, the
|
|
* byte beyond the last one is going to accompany it during a
|
|
* possible fetch. In the most likely case of a little endian
|
|
* system, that beyond-byte will become the major opcode and
|
|
* we have no control over its initialisation.
|
|
*/
|
|
static void fill_ill_insn(void *area, unsigned int size)
|
|
{
|
|
const u16 unimp_s = 0x79e0;
|
|
|
|
if (size & 1) {
|
|
*((u8 *)area + (size - 1)) = 0xff;
|
|
size -= 1;
|
|
}
|
|
|
|
memset16(area, unimp_s, size >> 1);
|
|
}
|
|
|
|
/* Piece of memory that can be allocated at the beginning of jit_prepare(). */
|
|
static int jit_prepare_early_mem_alloc(struct jit_context *ctx)
|
|
{
|
|
ctx->bpf2insn = kcalloc(ctx->prog->len, sizeof(ctx->jit.len),
|
|
GFP_KERNEL);
|
|
|
|
if (!ctx->bpf2insn) {
|
|
pr_err("bpf-jit: could not allocate memory for "
|
|
"mapping of the instructions.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Memory allocations that rely on parameters known at the end of
|
|
* jit_prepare().
|
|
*/
|
|
static int jit_prepare_final_mem_alloc(struct jit_context *ctx)
|
|
{
|
|
const size_t alignment = sizeof(u32);
|
|
|
|
ctx->bpf_header = bpf_jit_binary_alloc(ctx->jit.len, &ctx->jit.buf,
|
|
alignment, fill_ill_insn);
|
|
if (!ctx->bpf_header) {
|
|
pr_err("bpf-jit: could not allocate memory for translation.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (ctx->need_extra_pass) {
|
|
ctx->jit_data = kzalloc(sizeof(*ctx->jit_data), GFP_KERNEL);
|
|
if (!ctx->jit_data)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The first phase of the translation without actually emitting any
|
|
* instruction. It helps in getting a forecast on some aspects, such
|
|
* as the length of the whole program or where the epilogue starts.
|
|
*
|
|
* Whenever the necessary parameters are known, memories are allocated.
|
|
*/
|
|
static int jit_prepare(struct jit_context *ctx)
|
|
{
|
|
int ret;
|
|
|
|
/* Dry run. */
|
|
ctx->emit = false;
|
|
|
|
CHECK_RET(jit_prepare_early_mem_alloc(ctx));
|
|
|
|
/* Get the length of prologue section after some register analysis. */
|
|
analyze_reg_usage(ctx);
|
|
CHECK_RET(handle_prologue(ctx));
|
|
|
|
CHECK_RET(handle_body(ctx));
|
|
|
|
/* Record at which offset epilogue begins. */
|
|
ctx->epilogue_offset = ctx->jit.len;
|
|
|
|
/* Process the epilogue section now. */
|
|
CHECK_RET(handle_epilogue(ctx));
|
|
|
|
CHECK_RET(jit_prepare_final_mem_alloc(ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All the "handle_*()" functions have been called before by the
|
|
* "jit_prepare()". If there was an error, we would know by now.
|
|
* Therefore, no extra error checking at this point, other than
|
|
* a sanity check at the end that expects the calculated length
|
|
* (jit.len) to be equal to the length of generated instructions
|
|
* (jit.index).
|
|
*/
|
|
static int jit_compile(struct jit_context *ctx)
|
|
{
|
|
int ret;
|
|
|
|
/* Let there be code. */
|
|
ctx->emit = true;
|
|
|
|
CHECK_RET(handle_prologue(ctx));
|
|
|
|
CHECK_RET(handle_body(ctx));
|
|
|
|
CHECK_RET(handle_epilogue(ctx));
|
|
|
|
if (ctx->jit.index != ctx->jit.len) {
|
|
pr_err("bpf-jit: divergence between the phases; "
|
|
"%u vs. %u (bytes).\n",
|
|
ctx->jit.len, ctx->jit.index);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Calling this function implies a successful JIT. A successful
|
|
* translation is signaled by setting the right parameters:
|
|
*
|
|
* prog->jited=1, prog->jited_len=..., prog->bpf_func=...
|
|
*/
|
|
static int jit_finalize(struct jit_context *ctx)
|
|
{
|
|
struct bpf_prog *prog = ctx->prog;
|
|
|
|
/* We're going to need this information for the "do_extra_pass()". */
|
|
if (ctx->need_extra_pass) {
|
|
ctx->jit_data->bpf_header = ctx->bpf_header;
|
|
ctx->jit_data->bpf2insn = ctx->bpf2insn;
|
|
prog->aux->jit_data = (void *)ctx->jit_data;
|
|
} else {
|
|
/*
|
|
* If things seem finalised, then mark the JITed memory
|
|
* as R-X and flush it.
|
|
*/
|
|
if (bpf_jit_binary_lock_ro(ctx->bpf_header)) {
|
|
pr_err("bpf-jit: Could not lock the JIT memory.\n");
|
|
return -EFAULT;
|
|
}
|
|
flush_icache_range((unsigned long)ctx->bpf_header,
|
|
(unsigned long)
|
|
BUF(ctx->jit.buf, ctx->jit.len));
|
|
prog->aux->jit_data = NULL;
|
|
bpf_prog_fill_jited_linfo(prog, ctx->bpf2insn);
|
|
}
|
|
|
|
ctx->success = true;
|
|
prog->bpf_func = (void *)ctx->jit.buf;
|
|
prog->jited_len = ctx->jit.len;
|
|
prog->jited = 1;
|
|
|
|
jit_ctx_cleanup(ctx);
|
|
jit_dump(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A lenient verification for the existence of JIT context in "prog".
|
|
* Apparently the JIT internals, namely jit_subprogs() in bpf/verifier.c,
|
|
* may request for a second compilation although nothing needs to be done.
|
|
*/
|
|
static inline int check_jit_context(const struct bpf_prog *prog)
|
|
{
|
|
if (!prog->aux->jit_data) {
|
|
pr_notice("bpf-jit: no jit data for the extra pass.\n");
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Reuse the previous pass's data. */
|
|
static int jit_resume_context(struct jit_context *ctx)
|
|
{
|
|
struct arc_jit_data *jdata =
|
|
(struct arc_jit_data *)ctx->prog->aux->jit_data;
|
|
|
|
if (!jdata) {
|
|
pr_err("bpf-jit: no jit data for the extra pass.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->jit.buf = (u8 *)ctx->prog->bpf_func;
|
|
ctx->jit.len = ctx->prog->jited_len;
|
|
ctx->bpf_header = jdata->bpf_header;
|
|
ctx->bpf2insn = (u32 *)jdata->bpf2insn;
|
|
ctx->bpf2insn_valid = ctx->bpf2insn ? true : false;
|
|
ctx->jit_data = jdata;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Patch in the new addresses. The instructions of interest are:
|
|
*
|
|
* - call
|
|
* - ld r64, imm64
|
|
*
|
|
* For "call"s, it resolves the addresses one more time through the
|
|
* handle_call().
|
|
*
|
|
* For 64-bit immediate loads, it just retranslates them, because the BPF
|
|
* core in kernel might have changed the value since the normal pass.
|
|
*/
|
|
static int jit_patch_relocations(struct jit_context *ctx)
|
|
{
|
|
const u8 bpf_opc_call = BPF_JMP | BPF_CALL;
|
|
const u8 bpf_opc_ldi64 = BPF_LD | BPF_DW | BPF_IMM;
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
int ret;
|
|
|
|
ctx->emit = true;
|
|
for (u32 i = 0; i < prog->len; i++) {
|
|
const struct bpf_insn *insn = &prog->insnsi[i];
|
|
u8 dummy;
|
|
/*
|
|
* Adjust "ctx.jit.index", so "gen_*()" functions below
|
|
* can use it for their output addresses.
|
|
*/
|
|
ctx->jit.index = ctx->bpf2insn[i];
|
|
|
|
if (insn->code == bpf_opc_call) {
|
|
CHECK_RET(handle_call(ctx, insn, &dummy));
|
|
} else if (insn->code == bpf_opc_ldi64) {
|
|
CHECK_RET(handle_ld_imm64(ctx, insn, &dummy));
|
|
/* Skip the next instruction. */
|
|
++i;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A normal pass that involves a "dry-run" phase, jit_prepare(),
|
|
* to get the necessary data for the real compilation phase,
|
|
* jit_compile().
|
|
*/
|
|
static struct bpf_prog *do_normal_pass(struct bpf_prog *prog)
|
|
{
|
|
struct jit_context ctx;
|
|
|
|
/* Bail out if JIT is disabled. */
|
|
if (!prog->jit_requested)
|
|
return prog;
|
|
|
|
if (jit_ctx_init(&ctx, prog)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
/* Get the lengths and allocate buffer. */
|
|
if (jit_prepare(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
if (jit_compile(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
if (jit_finalize(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
return ctx.prog;
|
|
}
|
|
|
|
/*
|
|
* If there are multi-function BPF programs that call each other,
|
|
* their translated addresses are not known all at once. Therefore,
|
|
* an extra pass is needed to consult the bpf_jit_get_func_addr()
|
|
* again to get the newly translated addresses in order to resolve
|
|
* the "call"s.
|
|
*/
|
|
static struct bpf_prog *do_extra_pass(struct bpf_prog *prog)
|
|
{
|
|
struct jit_context ctx;
|
|
|
|
/* Skip if there's no context to resume from. */
|
|
if (check_jit_context(prog))
|
|
return prog;
|
|
|
|
if (jit_ctx_init(&ctx, prog)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
if (jit_resume_context(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
if (jit_patch_relocations(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
if (jit_finalize(&ctx)) {
|
|
jit_ctx_cleanup(&ctx);
|
|
return prog;
|
|
}
|
|
|
|
return ctx.prog;
|
|
}
|
|
|
|
/*
|
|
* This function may be invoked twice for the same stream of BPF
|
|
* instructions. The "extra pass" happens, when there are "call"s
|
|
* involved that their addresses are not known during the first
|
|
* invocation.
|
|
*/
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
vm_dump(prog);
|
|
|
|
/* Was this program already translated? */
|
|
if (!prog->jited)
|
|
return do_normal_pass(prog);
|
|
else
|
|
return do_extra_pass(prog);
|
|
|
|
return prog;
|
|
}
|