linux-yocto/mm/sparse-vmemmap.c
Harry Yoo 80fc7c7efc mm: introduce and use {pgd,p4d}_populate_kernel()
commit f2d2f9598ebb0158a3fe17cda0106d7752e654a2 upstream.

Introduce and use {pgd,p4d}_populate_kernel() in core MM code when
populating PGD and P4D entries for the kernel address space.  These
helpers ensure proper synchronization of page tables when updating the
kernel portion of top-level page tables.

Until now, the kernel has relied on each architecture to handle
synchronization of top-level page tables in an ad-hoc manner.  For
example, see commit 9b861528a8 ("x86-64, mem: Update all PGDs for direct
mapping and vmemmap mapping changes").

However, this approach has proven fragile for following reasons:

  1) It is easy to forget to perform the necessary page table
     synchronization when introducing new changes.
     For instance, commit 4917f55b4e ("mm/sparse-vmemmap: improve memory
     savings for compound devmaps") overlooked the need to synchronize
     page tables for the vmemmap area.

  2) It is also easy to overlook that the vmemmap and direct mapping areas
     must not be accessed before explicit page table synchronization.
     For example, commit 8d400913c2 ("x86/vmemmap: handle unpopulated
     sub-pmd ranges")) caused crashes by accessing the vmemmap area
     before calling sync_global_pgds().

To address this, as suggested by Dave Hansen, introduce _kernel() variants
of the page table population helpers, which invoke architecture-specific
hooks to properly synchronize page tables.  These are introduced in a new
header file, include/linux/pgalloc.h, so they can be called from common
code.

They reuse existing infrastructure for vmalloc and ioremap.
Synchronization requirements are determined by ARCH_PAGE_TABLE_SYNC_MASK,
and the actual synchronization is performed by
arch_sync_kernel_mappings().

This change currently targets only x86_64, so only PGD and P4D level
helpers are introduced.  Currently, these helpers are no-ops since no
architecture sets PGTBL_{PGD,P4D}_MODIFIED in ARCH_PAGE_TABLE_SYNC_MASK.

In theory, PUD and PMD level helpers can be added later if needed by other
architectures.  For now, 32-bit architectures (x86-32 and arm) only handle
PGTBL_PMD_MODIFIED, so p*d_populate_kernel() will never affect them unless
we introduce a PMD level helper.

[harry.yoo@oracle.com: fix KASAN build error due to p*d_populate_kernel()]
  Link: https://lkml.kernel.org/r/20250822020727.202749-1-harry.yoo@oracle.com
Link: https://lkml.kernel.org/r/20250818020206.4517-3-harry.yoo@oracle.com
Fixes: 8d400913c2 ("x86/vmemmap: handle unpopulated sub-pmd ranges")
Signed-off-by: Harry Yoo <harry.yoo@oracle.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kiryl Shutsemau <kas@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: bibo mao <maobibo@loongson.cn>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Christoph Lameter (Ampere) <cl@gentwo.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Huth <thuth@redhat.com>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Adjust context ]
Signed-off-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-09-19 16:29:55 +02:00

399 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Virtual Memory Map support
*
* (C) 2007 sgi. Christoph Lameter.
*
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
* virt_to_page, page_address() to be implemented as a base offset
* calculation without memory access.
*
* However, virtual mappings need a page table and TLBs. Many Linux
* architectures already map their physical space using 1-1 mappings
* via TLBs. For those arches the virtual memory map is essentially
* for free if we use the same page size as the 1-1 mappings. In that
* case the overhead consists of a few additional pages that are
* allocated to create a view of memory for vmemmap.
*
* The architecture is expected to provide a vmemmap_populate() function
* to instantiate the mapping.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/memremap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <linux/pgalloc.h>
#include <asm/dma.h>
/*
* Allocate a block of memory to be used to back the virtual memory map
* or to back the page tables that are used to create the mapping.
* Uses the main allocators if they are available, else bootmem.
*/
static void * __ref __earlyonly_bootmem_alloc(int node,
unsigned long size,
unsigned long align,
unsigned long goal)
{
return memblock_alloc_try_nid_raw(size, align, goal,
MEMBLOCK_ALLOC_ACCESSIBLE, node);
}
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
/* If the main allocator is up use that, fallback to bootmem. */
if (slab_is_available()) {
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
int order = get_order(size);
static bool warned;
struct page *page;
page = alloc_pages_node(node, gfp_mask, order);
if (page)
return page_address(page);
if (!warned) {
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
"vmemmap alloc failure: order:%u", order);
warned = true;
}
return NULL;
} else
return __earlyonly_bootmem_alloc(node, size, size,
__pa(MAX_DMA_ADDRESS));
}
static void * __meminit altmap_alloc_block_buf(unsigned long size,
struct vmem_altmap *altmap);
/* need to make sure size is all the same during early stage */
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap)
{
void *ptr;
if (altmap)
return altmap_alloc_block_buf(size, altmap);
ptr = sparse_buffer_alloc(size);
if (!ptr)
ptr = vmemmap_alloc_block(size, node);
return ptr;
}
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
{
return altmap->base_pfn + altmap->reserve + altmap->alloc
+ altmap->align;
}
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
{
unsigned long allocated = altmap->alloc + altmap->align;
if (altmap->free > allocated)
return altmap->free - allocated;
return 0;
}
static void * __meminit altmap_alloc_block_buf(unsigned long size,
struct vmem_altmap *altmap)
{
unsigned long pfn, nr_pfns, nr_align;
if (size & ~PAGE_MASK) {
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
__func__, size);
return NULL;
}
pfn = vmem_altmap_next_pfn(altmap);
nr_pfns = size >> PAGE_SHIFT;
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
nr_align = ALIGN(pfn, nr_align) - pfn;
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
return NULL;
altmap->alloc += nr_pfns;
altmap->align += nr_align;
pfn += nr_align;
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
return __va(__pfn_to_phys(pfn));
}
void __meminit vmemmap_verify(pte_t *pte, int node,
unsigned long start, unsigned long end)
{
unsigned long pfn = pte_pfn(*pte);
int actual_node = early_pfn_to_nid(pfn);
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
start, end - 1);
}
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
struct vmem_altmap *altmap,
struct page *reuse)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) {
pte_t entry;
void *p;
if (!reuse) {
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
if (!p)
return NULL;
} else {
/*
* When a PTE/PMD entry is freed from the init_mm
* there's a free_pages() call to this page allocated
* above. Thus this get_page() is paired with the
* put_page_testzero() on the freeing path.
* This can only called by certain ZONE_DEVICE path,
* and through vmemmap_populate_compound_pages() when
* slab is available.
*/
get_page(reuse);
p = page_to_virt(reuse);
}
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
}
return pte;
}
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
{
void *p = vmemmap_alloc_block(size, node);
if (!p)
return NULL;
memset(p, 0, size);
return p;
}
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
pmd_t *pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pmd_populate_kernel(&init_mm, pmd, p);
}
return pmd;
}
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
{
pud_t *pud = pud_offset(p4d, addr);
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pud_populate(&init_mm, pud, p);
}
return pud;
}
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
{
p4d_t *p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
p4d_populate_kernel(addr, p4d, p);
}
return p4d;
}
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
pgd_t *pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pgd_populate_kernel(addr, pgd, p);
}
return pgd;
}
static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
struct vmem_altmap *altmap,
struct page *reuse)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return NULL;
p4d = vmemmap_p4d_populate(pgd, addr, node);
if (!p4d)
return NULL;
pud = vmemmap_pud_populate(p4d, addr, node);
if (!pud)
return NULL;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return NULL;
pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
if (!pte)
return NULL;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
return pte;
}
static int __meminit vmemmap_populate_range(unsigned long start,
unsigned long end, int node,
struct vmem_altmap *altmap,
struct page *reuse)
{
unsigned long addr = start;
pte_t *pte;
for (; addr < end; addr += PAGE_SIZE) {
pte = vmemmap_populate_address(addr, node, altmap, reuse);
if (!pte)
return -ENOMEM;
}
return 0;
}
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap)
{
return vmemmap_populate_range(start, end, node, altmap, NULL);
}
/*
* For compound pages bigger than section size (e.g. x86 1G compound
* pages with 2M subsection size) fill the rest of sections as tail
* pages.
*
* Note that memremap_pages() resets @nr_range value and will increment
* it after each range successful onlining. Thus the value or @nr_range
* at section memmap populate corresponds to the in-progress range
* being onlined here.
*/
static bool __meminit reuse_compound_section(unsigned long start_pfn,
struct dev_pagemap *pgmap)
{
unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
unsigned long offset = start_pfn -
PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
}
static pte_t * __meminit compound_section_tail_page(unsigned long addr)
{
pte_t *pte;
addr -= PAGE_SIZE;
/*
* Assuming sections are populated sequentially, the previous section's
* page data can be reused.
*/
pte = pte_offset_kernel(pmd_off_k(addr), addr);
if (!pte)
return NULL;
return pte;
}
static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
unsigned long start,
unsigned long end, int node,
struct dev_pagemap *pgmap)
{
unsigned long size, addr;
pte_t *pte;
int rc;
if (reuse_compound_section(start_pfn, pgmap)) {
pte = compound_section_tail_page(start);
if (!pte)
return -ENOMEM;
/*
* Reuse the page that was populated in the prior iteration
* with just tail struct pages.
*/
return vmemmap_populate_range(start, end, node, NULL,
pte_page(*pte));
}
size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
for (addr = start; addr < end; addr += size) {
unsigned long next, last = addr + size;
/* Populate the head page vmemmap page */
pte = vmemmap_populate_address(addr, node, NULL, NULL);
if (!pte)
return -ENOMEM;
/* Populate the tail pages vmemmap page */
next = addr + PAGE_SIZE;
pte = vmemmap_populate_address(next, node, NULL, NULL);
if (!pte)
return -ENOMEM;
/*
* Reuse the previous page for the rest of tail pages
* See layout diagram in Documentation/mm/vmemmap_dedup.rst
*/
next += PAGE_SIZE;
rc = vmemmap_populate_range(next, last, node, NULL,
pte_page(*pte));
if (rc)
return -ENOMEM;
}
return 0;
}
struct page * __meminit __populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
unsigned long start = (unsigned long) pfn_to_page(pfn);
unsigned long end = start + nr_pages * sizeof(struct page);
int r;
if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
return NULL;
if (is_power_of_2(sizeof(struct page)) &&
pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
else
r = vmemmap_populate(start, end, nid, altmap);
if (r < 0)
return NULL;
return pfn_to_page(pfn);
}