mirror of
git://git.yoctoproject.org/linux-yocto.git
synced 2025-07-06 13:55:22 +02:00

commit 1f9ed172545687e5c04c77490a45896be6d2e459 upstream. In Rust, it is possible to `allow` particular warnings (diagnostics, lints) locally, making the compiler ignore instances of a given warning within a given function, module, block, etc. It is similar to `#pragma GCC diagnostic push` + `ignored` + `pop` in C: #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-function" static void f(void) {} #pragma GCC diagnostic pop But way less verbose: #[allow(dead_code)] fn f() {} By that virtue, it makes it possible to comfortably enable more diagnostics by default (i.e. outside `W=` levels) that may have some false positives but that are otherwise quite useful to keep enabled to catch potential mistakes. The `#[expect(...)]` attribute [1] takes this further, and makes the compiler warn if the diagnostic was _not_ produced. For instance, the following will ensure that, when `f()` is called somewhere, we will have to remove the attribute: #[expect(dead_code)] fn f() {} If we do not, we get a warning from the compiler: warning: this lint expectation is unfulfilled --> x.rs:3:10 | 3 | #[expect(dead_code)] | ^^^^^^^^^ | = note: `#[warn(unfulfilled_lint_expectations)]` on by default This means that `expect`s do not get forgotten when they are not needed. See the next commit for more details, nuances on its usage and documentation on the feature. The attribute requires the `lint_reasons` [2] unstable feature, but it is becoming stable in 1.81.0 (to be released on 2024-09-05) and it has already been useful to clean things up in this patch series, finding cases where the `allow`s should not have been there. Thus, enable `lint_reasons` and convert some of our `allow`s to `expect`s where possible. This feature was also an example of the ongoing collaboration between Rust and the kernel -- we tested it in the kernel early on and found an issue that was quickly resolved [3]. Cc: Fridtjof Stoldt <xfrednet@gmail.com> Cc: Urgau <urgau@numericable.fr> Link: https://rust-lang.github.io/rfcs/2383-lint-reasons.html#expect-lint-attribute [1] Link: https://github.com/rust-lang/rust/issues/54503 [2] Link: https://github.com/rust-lang/rust/issues/114557 [3] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Tested-by: Gary Guo <gary@garyguo.net> Reviewed-by: Gary Guo <gary@garyguo.net> Link: https://lore.kernel.org/r/20240904204347.168520-18-ojeda@kernel.org Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
150 lines
4.0 KiB
Rust
150 lines
4.0 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! The `kernel` crate.
|
|
//!
|
|
//! This crate contains the kernel APIs that have been ported or wrapped for
|
|
//! usage by Rust code in the kernel and is shared by all of them.
|
|
//!
|
|
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
|
|
//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
|
|
//!
|
|
//! If you need a kernel C API that is not ported or wrapped yet here, then
|
|
//! do so first instead of bypassing this crate.
|
|
|
|
#![no_std]
|
|
#![feature(arbitrary_self_types)]
|
|
#![feature(coerce_unsized)]
|
|
#![feature(dispatch_from_dyn)]
|
|
#![feature(lint_reasons)]
|
|
#![feature(new_uninit)]
|
|
#![feature(unsize)]
|
|
|
|
// Ensure conditional compilation based on the kernel configuration works;
|
|
// otherwise we may silently break things like initcall handling.
|
|
#[cfg(not(CONFIG_RUST))]
|
|
compile_error!("Missing kernel configuration for conditional compilation");
|
|
|
|
// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate).
|
|
extern crate self as kernel;
|
|
|
|
pub mod alloc;
|
|
#[cfg(CONFIG_BLOCK)]
|
|
pub mod block;
|
|
mod build_assert;
|
|
pub mod device;
|
|
pub mod error;
|
|
#[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
|
|
pub mod firmware;
|
|
pub mod init;
|
|
pub mod ioctl;
|
|
#[cfg(CONFIG_KUNIT)]
|
|
pub mod kunit;
|
|
pub mod list;
|
|
#[cfg(CONFIG_NET)]
|
|
pub mod net;
|
|
pub mod page;
|
|
pub mod prelude;
|
|
pub mod print;
|
|
pub mod rbtree;
|
|
pub mod sizes;
|
|
mod static_assert;
|
|
#[doc(hidden)]
|
|
pub mod std_vendor;
|
|
pub mod str;
|
|
pub mod sync;
|
|
pub mod task;
|
|
pub mod time;
|
|
pub mod types;
|
|
pub mod uaccess;
|
|
pub mod workqueue;
|
|
|
|
#[doc(hidden)]
|
|
pub use bindings;
|
|
pub use macros;
|
|
pub use uapi;
|
|
|
|
#[doc(hidden)]
|
|
pub use build_error::build_error;
|
|
|
|
/// Prefix to appear before log messages printed from within the `kernel` crate.
|
|
const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
|
|
|
|
/// The top level entrypoint to implementing a kernel module.
|
|
///
|
|
/// For any teardown or cleanup operations, your type may implement [`Drop`].
|
|
pub trait Module: Sized + Sync + Send {
|
|
/// Called at module initialization time.
|
|
///
|
|
/// Use this method to perform whatever setup or registration your module
|
|
/// should do.
|
|
///
|
|
/// Equivalent to the `module_init` macro in the C API.
|
|
fn init(module: &'static ThisModule) -> error::Result<Self>;
|
|
}
|
|
|
|
/// Equivalent to `THIS_MODULE` in the C API.
|
|
///
|
|
/// C header: [`include/linux/init.h`](srctree/include/linux/init.h)
|
|
pub struct ThisModule(*mut bindings::module);
|
|
|
|
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
|
|
unsafe impl Sync for ThisModule {}
|
|
|
|
impl ThisModule {
|
|
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The pointer must be equal to the right `THIS_MODULE`.
|
|
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
|
|
ThisModule(ptr)
|
|
}
|
|
|
|
/// Access the raw pointer for this module.
|
|
///
|
|
/// It is up to the user to use it correctly.
|
|
pub const fn as_ptr(&self) -> *mut bindings::module {
|
|
self.0
|
|
}
|
|
}
|
|
|
|
#[cfg(not(any(testlib, test)))]
|
|
#[panic_handler]
|
|
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
|
|
pr_emerg!("{}\n", info);
|
|
// SAFETY: FFI call.
|
|
unsafe { bindings::BUG() };
|
|
}
|
|
|
|
/// Produces a pointer to an object from a pointer to one of its fields.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// The pointer passed to this macro, and the pointer returned by this macro, must both be in
|
|
/// bounds of the same allocation.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// # use kernel::container_of;
|
|
/// struct Test {
|
|
/// a: u64,
|
|
/// b: u32,
|
|
/// }
|
|
///
|
|
/// let test = Test { a: 10, b: 20 };
|
|
/// let b_ptr = &test.b;
|
|
/// // SAFETY: The pointer points at the `b` field of a `Test`, so the resulting pointer will be
|
|
/// // in-bounds of the same allocation as `b_ptr`.
|
|
/// let test_alias = unsafe { container_of!(b_ptr, Test, b) };
|
|
/// assert!(core::ptr::eq(&test, test_alias));
|
|
/// ```
|
|
#[macro_export]
|
|
macro_rules! container_of {
|
|
($ptr:expr, $type:ty, $($f:tt)*) => {{
|
|
let ptr = $ptr as *const _ as *const u8;
|
|
let offset: usize = ::core::mem::offset_of!($type, $($f)*);
|
|
ptr.sub(offset) as *const $type
|
|
}}
|
|
}
|