linux-yocto/rust/kernel/lib.rs
Miguel Ojeda 706d4296b8 rust: start using the #[expect(...)] attribute
commit 1f9ed172545687e5c04c77490a45896be6d2e459 upstream.

In Rust, it is possible to `allow` particular warnings (diagnostics,
lints) locally, making the compiler ignore instances of a given warning
within a given function, module, block, etc.

It is similar to `#pragma GCC diagnostic push` + `ignored` + `pop` in C:

    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wunused-function"
    static void f(void) {}
    #pragma GCC diagnostic pop

But way less verbose:

    #[allow(dead_code)]
    fn f() {}

By that virtue, it makes it possible to comfortably enable more
diagnostics by default (i.e. outside `W=` levels) that may have some
false positives but that are otherwise quite useful to keep enabled to
catch potential mistakes.

The `#[expect(...)]` attribute [1] takes this further, and makes the
compiler warn if the diagnostic was _not_ produced. For instance, the
following will ensure that, when `f()` is called somewhere, we will have
to remove the attribute:

    #[expect(dead_code)]
    fn f() {}

If we do not, we get a warning from the compiler:

    warning: this lint expectation is unfulfilled
     --> x.rs:3:10
      |
    3 | #[expect(dead_code)]
      |          ^^^^^^^^^
      |
      = note: `#[warn(unfulfilled_lint_expectations)]` on by default

This means that `expect`s do not get forgotten when they are not needed.

See the next commit for more details, nuances on its usage and
documentation on the feature.

The attribute requires the `lint_reasons` [2] unstable feature, but it
is becoming stable in 1.81.0 (to be released on 2024-09-05) and it has
already been useful to clean things up in this patch series, finding
cases where the `allow`s should not have been there.

Thus, enable `lint_reasons` and convert some of our `allow`s to `expect`s
where possible.

This feature was also an example of the ongoing collaboration between
Rust and the kernel -- we tested it in the kernel early on and found an
issue that was quickly resolved [3].

Cc: Fridtjof Stoldt <xfrednet@gmail.com>
Cc: Urgau <urgau@numericable.fr>
Link: https://rust-lang.github.io/rfcs/2383-lint-reasons.html#expect-lint-attribute [1]
Link: https://github.com/rust-lang/rust/issues/54503 [2]
Link: https://github.com/rust-lang/rust/issues/114557 [3]
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-18-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13 13:01:42 +01:00

150 lines
4.0 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! The `kernel` crate.
//!
//! This crate contains the kernel APIs that have been ported or wrapped for
//! usage by Rust code in the kernel and is shared by all of them.
//!
//! In other words, all the rest of the Rust code in the kernel (e.g. kernel
//! modules written in Rust) depends on [`core`], [`alloc`] and this crate.
//!
//! If you need a kernel C API that is not ported or wrapped yet here, then
//! do so first instead of bypassing this crate.
#![no_std]
#![feature(arbitrary_self_types)]
#![feature(coerce_unsized)]
#![feature(dispatch_from_dyn)]
#![feature(lint_reasons)]
#![feature(new_uninit)]
#![feature(unsize)]
// Ensure conditional compilation based on the kernel configuration works;
// otherwise we may silently break things like initcall handling.
#[cfg(not(CONFIG_RUST))]
compile_error!("Missing kernel configuration for conditional compilation");
// Allow proc-macros to refer to `::kernel` inside the `kernel` crate (this crate).
extern crate self as kernel;
pub mod alloc;
#[cfg(CONFIG_BLOCK)]
pub mod block;
mod build_assert;
pub mod device;
pub mod error;
#[cfg(CONFIG_RUST_FW_LOADER_ABSTRACTIONS)]
pub mod firmware;
pub mod init;
pub mod ioctl;
#[cfg(CONFIG_KUNIT)]
pub mod kunit;
pub mod list;
#[cfg(CONFIG_NET)]
pub mod net;
pub mod page;
pub mod prelude;
pub mod print;
pub mod rbtree;
pub mod sizes;
mod static_assert;
#[doc(hidden)]
pub mod std_vendor;
pub mod str;
pub mod sync;
pub mod task;
pub mod time;
pub mod types;
pub mod uaccess;
pub mod workqueue;
#[doc(hidden)]
pub use bindings;
pub use macros;
pub use uapi;
#[doc(hidden)]
pub use build_error::build_error;
/// Prefix to appear before log messages printed from within the `kernel` crate.
const __LOG_PREFIX: &[u8] = b"rust_kernel\0";
/// The top level entrypoint to implementing a kernel module.
///
/// For any teardown or cleanup operations, your type may implement [`Drop`].
pub trait Module: Sized + Sync + Send {
/// Called at module initialization time.
///
/// Use this method to perform whatever setup or registration your module
/// should do.
///
/// Equivalent to the `module_init` macro in the C API.
fn init(module: &'static ThisModule) -> error::Result<Self>;
}
/// Equivalent to `THIS_MODULE` in the C API.
///
/// C header: [`include/linux/init.h`](srctree/include/linux/init.h)
pub struct ThisModule(*mut bindings::module);
// SAFETY: `THIS_MODULE` may be used from all threads within a module.
unsafe impl Sync for ThisModule {}
impl ThisModule {
/// Creates a [`ThisModule`] given the `THIS_MODULE` pointer.
///
/// # Safety
///
/// The pointer must be equal to the right `THIS_MODULE`.
pub const unsafe fn from_ptr(ptr: *mut bindings::module) -> ThisModule {
ThisModule(ptr)
}
/// Access the raw pointer for this module.
///
/// It is up to the user to use it correctly.
pub const fn as_ptr(&self) -> *mut bindings::module {
self.0
}
}
#[cfg(not(any(testlib, test)))]
#[panic_handler]
fn panic(info: &core::panic::PanicInfo<'_>) -> ! {
pr_emerg!("{}\n", info);
// SAFETY: FFI call.
unsafe { bindings::BUG() };
}
/// Produces a pointer to an object from a pointer to one of its fields.
///
/// # Safety
///
/// The pointer passed to this macro, and the pointer returned by this macro, must both be in
/// bounds of the same allocation.
///
/// # Examples
///
/// ```
/// # use kernel::container_of;
/// struct Test {
/// a: u64,
/// b: u32,
/// }
///
/// let test = Test { a: 10, b: 20 };
/// let b_ptr = &test.b;
/// // SAFETY: The pointer points at the `b` field of a `Test`, so the resulting pointer will be
/// // in-bounds of the same allocation as `b_ptr`.
/// let test_alias = unsafe { container_of!(b_ptr, Test, b) };
/// assert!(core::ptr::eq(&test, test_alias));
/// ```
#[macro_export]
macro_rules! container_of {
($ptr:expr, $type:ty, $($f:tt)*) => {{
let ptr = $ptr as *const _ as *const u8;
let offset: usize = ::core::mem::offset_of!($type, $($f)*);
ptr.sub(offset) as *const $type
}}
}