mirror of
git://git.yoctoproject.org/linux-yocto.git
synced 2026-01-27 12:47:24 +01:00
* Add support for host userspace mapping of guest_memfd-backed memory for VM types that do NOT use support KVM_MEMORY_ATTRIBUTE_PRIVATE (which isn't precisely the same thing as CoCo VMs, since x86's SEV-MEM and SEV-ES have no way to detect private vs. shared). This lays the groundwork for removal of guest memory from the kernel direct map, as well as for limited mmap() for guest_memfd-backed memory. For more information see: *a6ad54137a("Merge branch 'guest-memfd-mmap' into HEAD", 2025-08-27) * https://github.com/firecracker-microvm/firecracker/tree/feature/secret-hiding (guest_memfd in Firecracker) * https://lore.kernel.org/all/20250221160728.1584559-1-roypat@amazon.co.uk/ (direct map removal) * https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/ (mmap support) ARM: * Add support for FF-A 1.2 as the secure memory conduit for pKVM, allowing more registers to be used as part of the message payload. * Change the way pKVM allocates its VM handles, making sure that the privileged hypervisor is never tricked into using uninitialised data. * Speed up MMIO range registration by avoiding unnecessary RCU synchronisation, which results in VMs starting much quicker. * Add the dump of the instruction stream when panic-ing in the EL2 payload, just like the rest of the kernel has always done. This will hopefully help debugging non-VHE setups. * Add 52bit PA support to the stage-1 page-table walker, and make use of it to populate the fault level reported to the guest on failing to translate a stage-1 walk. * Add NV support to the GICv3-on-GICv5 emulation code, ensuring feature parity for guests, irrespective of the host platform. * Fix some really ugly architecture problems when dealing with debug in a nested VM. This has some bad performance impacts, but is at least correct. * Add enough infrastructure to be able to disable EL2 features and give effective values to the EL2 control registers. This then allows a bunch of features to be turned off, which helps cross-host migration. * Large rework of the selftest infrastructure to allow most tests to transparently run at EL2. This is the first step towards enabling NV testing. * Various fixes and improvements all over the map, including one BE fix, just in time for the removal of the feature. LoongArch: * Detect page table walk feature on new hardware * Add sign extension with kernel MMIO/IOCSR emulation * Improve in-kernel IPI emulation * Improve in-kernel PCH-PIC emulation * Move kvm_iocsr tracepoint out of generic code RISC-V: * Added SBI FWFT extension for Guest/VM with misaligned delegation and pointer masking PMLEN features * Added ONE_REG interface for SBI FWFT extension * Added Zicbop and bfloat16 extensions for Guest/VM * Enabled more common KVM selftests for RISC-V * Added SBI v3.0 PMU enhancements in KVM and perf driver s390: * Improve interrupt cpu for wakeup, in particular the heuristic to decide which vCPU to deliver a floating interrupt to. * Clear the PTE when discarding a swapped page because of CMMA; this bug was introduced in 6.16 when refactoring gmap code. x86 selftests: * Add #DE coverage in the fastops test (the only exception that's guest- triggerable in fastop-emulated instructions). * Fix PMU selftests errors encountered on Granite Rapids (GNR), Sierra Forest (SRF) and Clearwater Forest (CWF). * Minor cleanups and improvements x86 (guest side): * For the legacy PCI hole (memory between TOLUD and 4GiB) to UC when overriding guest MTRR for TDX/SNP to fix an issue where ACPI auto-mapping could map devices as WB and prevent the device drivers from mapping their devices with UC/UC-. * Make kvm_async_pf_task_wake() a local static helper and remove its export. * Use native qspinlocks when running in a VM with dedicated vCPU=>pCPU bindings even when PV_UNHALT is unsupported. Generic: * Remove a redundant __GFP_NOWARN from kvm_setup_async_pf() as __GFP_NOWARN is now included in GFP_NOWAIT. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmjcGSkUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPSPAgAnJDswU4fZ5YdJr6jGzsbSQ6utlIV FeEltLKQIM7Aq/uvL6PLN5Kx1Pb/d9r9ag39mDT6lq9fOfJdOLjJr2SBXPTCsrPS 6hyNL1mlgo5qzs54T8dkMbQThlSgA4zaehsc0zl8vnwil6ygoAdrtTHqZm6V0hu/ F/sVlikCsLix1hC0KtzwscyWYcjWtXfVoi9eU5WY6ALpQaVXfRUtwyOhGDkldr+m i3iDiGiLAZ5Iu3igUCIOEzSSQY0FgLJpzbwJAeUxIvomDkHGJLaR14ijvM+NkRZi FBo2CLbjrwXb56Rbh2ABcq0CGJ3EiU3L+CC34UaRLzbtl/2BtpetkC3irA== =fyov -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "This excludes the bulk of the x86 changes, which I will send separately. They have two not complex but relatively unusual conflicts so I will wait for other dust to settle. guest_memfd: - Add support for host userspace mapping of guest_memfd-backed memory for VM types that do NOT use support KVM_MEMORY_ATTRIBUTE_PRIVATE (which isn't precisely the same thing as CoCo VMs, since x86's SEV-MEM and SEV-ES have no way to detect private vs. shared). This lays the groundwork for removal of guest memory from the kernel direct map, as well as for limited mmap() for guest_memfd-backed memory. For more information see: - commita6ad54137a("Merge branch 'guest-memfd-mmap' into HEAD") - guest_memfd in Firecracker: https://github.com/firecracker-microvm/firecracker/tree/feature/secret-hiding - direct map removal: https://lore.kernel.org/all/20250221160728.1584559-1-roypat@amazon.co.uk/ - mmap support: https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/ ARM: - Add support for FF-A 1.2 as the secure memory conduit for pKVM, allowing more registers to be used as part of the message payload. - Change the way pKVM allocates its VM handles, making sure that the privileged hypervisor is never tricked into using uninitialised data. - Speed up MMIO range registration by avoiding unnecessary RCU synchronisation, which results in VMs starting much quicker. - Add the dump of the instruction stream when panic-ing in the EL2 payload, just like the rest of the kernel has always done. This will hopefully help debugging non-VHE setups. - Add 52bit PA support to the stage-1 page-table walker, and make use of it to populate the fault level reported to the guest on failing to translate a stage-1 walk. - Add NV support to the GICv3-on-GICv5 emulation code, ensuring feature parity for guests, irrespective of the host platform. - Fix some really ugly architecture problems when dealing with debug in a nested VM. This has some bad performance impacts, but is at least correct. - Add enough infrastructure to be able to disable EL2 features and give effective values to the EL2 control registers. This then allows a bunch of features to be turned off, which helps cross-host migration. - Large rework of the selftest infrastructure to allow most tests to transparently run at EL2. This is the first step towards enabling NV testing. - Various fixes and improvements all over the map, including one BE fix, just in time for the removal of the feature. LoongArch: - Detect page table walk feature on new hardware - Add sign extension with kernel MMIO/IOCSR emulation - Improve in-kernel IPI emulation - Improve in-kernel PCH-PIC emulation - Move kvm_iocsr tracepoint out of generic code RISC-V: - Added SBI FWFT extension for Guest/VM with misaligned delegation and pointer masking PMLEN features - Added ONE_REG interface for SBI FWFT extension - Added Zicbop and bfloat16 extensions for Guest/VM - Enabled more common KVM selftests for RISC-V - Added SBI v3.0 PMU enhancements in KVM and perf driver s390: - Improve interrupt cpu for wakeup, in particular the heuristic to decide which vCPU to deliver a floating interrupt to. - Clear the PTE when discarding a swapped page because of CMMA; this bug was introduced in 6.16 when refactoring gmap code. x86 selftests: - Add #DE coverage in the fastops test (the only exception that's guest- triggerable in fastop-emulated instructions). - Fix PMU selftests errors encountered on Granite Rapids (GNR), Sierra Forest (SRF) and Clearwater Forest (CWF). - Minor cleanups and improvements x86 (guest side): - For the legacy PCI hole (memory between TOLUD and 4GiB) to UC when overriding guest MTRR for TDX/SNP to fix an issue where ACPI auto-mapping could map devices as WB and prevent the device drivers from mapping their devices with UC/UC-. - Make kvm_async_pf_task_wake() a local static helper and remove its export. - Use native qspinlocks when running in a VM with dedicated vCPU=>pCPU bindings even when PV_UNHALT is unsupported. Generic: - Remove a redundant __GFP_NOWARN from kvm_setup_async_pf() as __GFP_NOWARN is now included in GFP_NOWAIT. * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (178 commits) KVM: s390: Fix to clear PTE when discarding a swapped page KVM: arm64: selftests: Cover ID_AA64ISAR3_EL1 in set_id_regs KVM: arm64: selftests: Remove a duplicate register listing in set_id_regs KVM: arm64: selftests: Cope with arch silliness in EL2 selftest KVM: arm64: selftests: Add basic test for running in VHE EL2 KVM: arm64: selftests: Enable EL2 by default KVM: arm64: selftests: Initialize HCR_EL2 KVM: arm64: selftests: Use the vCPU attr for setting nr of PMU counters KVM: arm64: selftests: Use hyp timer IRQs when test runs at EL2 KVM: arm64: selftests: Select SMCCC conduit based on current EL KVM: arm64: selftests: Provide helper for getting default vCPU target KVM: arm64: selftests: Alias EL1 registers to EL2 counterparts KVM: arm64: selftests: Create a VGICv3 for 'default' VMs KVM: arm64: selftests: Add unsanitised helpers for VGICv3 creation KVM: arm64: selftests: Add helper to check for VGICv3 support KVM: arm64: selftests: Initialize VGICv3 only once KVM: arm64: selftests: Provide kvm_arch_vm_post_create() in library code KVM: selftests: Add ex_str() to print human friendly name of exception vectors selftests/kvm: remove stale TODO in xapic_state_test KVM: selftests: Handle Intel Atom errata that leads to PMU event overcount ...
576 lines
16 KiB
C
576 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/kvm/handle_exit.c:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/ubsan.h>
|
|
|
|
#include <asm/esr.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_nested.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/stacktrace/nvhe.h>
|
|
#include <asm/traps.h>
|
|
|
|
#include <kvm/arm_hypercalls.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_handle_exit.h"
|
|
|
|
typedef int (*exit_handle_fn)(struct kvm_vcpu *);
|
|
|
|
static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
|
|
{
|
|
if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
|
|
kvm_inject_serror(vcpu);
|
|
}
|
|
|
|
static int handle_hvc(struct kvm_vcpu *vcpu)
|
|
{
|
|
trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
|
|
kvm_vcpu_hvc_get_imm(vcpu));
|
|
vcpu->stat.hvc_exit_stat++;
|
|
|
|
/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
|
|
if (vcpu_has_nv(vcpu)) {
|
|
if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
|
|
kvm_inject_undefined(vcpu);
|
|
else
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
return 1;
|
|
}
|
|
|
|
return kvm_smccc_call_handler(vcpu);
|
|
}
|
|
|
|
static int handle_smc(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Forward this trapped smc instruction to the virtual EL2 if
|
|
* the guest has asked for it.
|
|
*/
|
|
if (forward_smc_trap(vcpu))
|
|
return 1;
|
|
|
|
/*
|
|
* "If an SMC instruction executed at Non-secure EL1 is
|
|
* trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
|
|
* Trap exception, not a Secure Monitor Call exception [...]"
|
|
*
|
|
* We need to advance the PC after the trap, as it would
|
|
* otherwise return to the same address. Furthermore, pre-incrementing
|
|
* the PC before potentially exiting to userspace maintains the same
|
|
* abstraction for both SMCs and HVCs.
|
|
*/
|
|
kvm_incr_pc(vcpu);
|
|
|
|
/*
|
|
* SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
|
|
* "SMC and HVC immediate value".
|
|
*/
|
|
if (kvm_vcpu_hvc_get_imm(vcpu)) {
|
|
vcpu_set_reg(vcpu, 0, ~0UL);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If imm is zero then it is likely an SMCCC call.
|
|
*
|
|
* Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
|
|
* at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
|
|
* being treated as UNDEFINED.
|
|
*/
|
|
return kvm_smccc_call_handler(vcpu);
|
|
}
|
|
|
|
/*
|
|
* This handles the cases where the system does not support FP/ASIMD or when
|
|
* we are running nested virtualization and the guest hypervisor is trapping
|
|
* FP/ASIMD accesses by its guest guest.
|
|
*
|
|
* All other handling of guest vs. host FP/ASIMD register state is handled in
|
|
* fixup_guest_exit().
|
|
*/
|
|
static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (guest_hyp_fpsimd_traps_enabled(vcpu))
|
|
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
/* This is the case when the system doesn't support FP/ASIMD. */
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
|
|
* instruction executed by a guest
|
|
*
|
|
* @vcpu: the vcpu pointer
|
|
*
|
|
* WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
|
|
* decides to.
|
|
* WFI: Simply call kvm_vcpu_halt(), which will halt execution of
|
|
* world-switches and schedule other host processes until there is an
|
|
* incoming IRQ or FIQ to the VM.
|
|
* WFIT: Same as WFI, with a timed wakeup implemented as a background timer
|
|
*
|
|
* WF{I,E}T can immediately return if the deadline has already expired.
|
|
*/
|
|
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE);
|
|
|
|
if (guest_hyp_wfx_traps_enabled(vcpu))
|
|
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
if (is_wfe) {
|
|
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
|
|
vcpu->stat.wfe_exit_stat++;
|
|
} else {
|
|
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
|
|
vcpu->stat.wfi_exit_stat++;
|
|
}
|
|
|
|
if (esr & ESR_ELx_WFx_ISS_WFxT) {
|
|
if (esr & ESR_ELx_WFx_ISS_RV) {
|
|
u64 val, now;
|
|
|
|
now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
|
|
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
|
|
|
|
if (now >= val)
|
|
goto out;
|
|
} else {
|
|
/* Treat WFxT as WFx if RN is invalid */
|
|
esr &= ~ESR_ELx_WFx_ISS_WFxT;
|
|
}
|
|
}
|
|
|
|
if (esr & ESR_ELx_WFx_ISS_WFE) {
|
|
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
|
|
} else {
|
|
if (esr & ESR_ELx_WFx_ISS_WFxT)
|
|
vcpu_set_flag(vcpu, IN_WFIT);
|
|
|
|
kvm_vcpu_wfi(vcpu);
|
|
}
|
|
out:
|
|
kvm_incr_pc(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_debug - handle a debug exception instruction
|
|
*
|
|
* @vcpu: the vcpu pointer
|
|
*
|
|
* We route all debug exceptions through the same handler. If both the
|
|
* guest and host are using the same debug facilities it will be up to
|
|
* userspace to re-inject the correct exception for guest delivery.
|
|
*
|
|
* @return: 0 (while setting vcpu->run->exit_reason)
|
|
*/
|
|
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
if (!vcpu->guest_debug && forward_debug_exception(vcpu))
|
|
return 1;
|
|
|
|
run->exit_reason = KVM_EXIT_DEBUG;
|
|
run->debug.arch.hsr = lower_32_bits(esr);
|
|
run->debug.arch.hsr_high = upper_32_bits(esr);
|
|
run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
|
|
|
|
switch (ESR_ELx_EC(esr)) {
|
|
case ESR_ELx_EC_WATCHPT_LOW:
|
|
run->debug.arch.far = vcpu->arch.fault.far_el2;
|
|
break;
|
|
case ESR_ELx_EC_SOFTSTP_LOW:
|
|
*vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
|
|
kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
|
|
esr, esr_get_class_string(esr));
|
|
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Guest access to SVE registers should be routed to this handler only
|
|
* when the system doesn't support SVE.
|
|
*/
|
|
static int handle_sve(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (guest_hyp_sve_traps_enabled(vcpu))
|
|
return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Two possibilities to handle a trapping ptrauth instruction:
|
|
*
|
|
* - Guest usage of a ptrauth instruction (which the guest EL1 did not
|
|
* turn into a NOP). If we get here, it is because we didn't enable
|
|
* ptrauth for the guest. This results in an UNDEF, as it isn't
|
|
* supposed to use ptrauth without being told it could.
|
|
*
|
|
* - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
|
|
* which we reinject the exception into L1.
|
|
*
|
|
* Anything else is an emulation bug (hence the WARN_ON + UNDEF).
|
|
*/
|
|
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu_has_ptrauth(vcpu)) {
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
if (is_nested_ctxt(vcpu)) {
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
return 1;
|
|
}
|
|
|
|
/* Really shouldn't be here! */
|
|
WARN_ON_ONCE(1);
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int kvm_handle_eret(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
|
|
!vcpu_has_ptrauth(vcpu))
|
|
return kvm_handle_ptrauth(vcpu);
|
|
|
|
/*
|
|
* If we got here, two possibilities:
|
|
*
|
|
* - the guest is in EL2, and we need to fully emulate ERET
|
|
*
|
|
* - the guest is in EL1, and we need to reinject the
|
|
* exception into the L1 hypervisor.
|
|
*
|
|
* If KVM ever traps ERET for its own use, we'll have to
|
|
* revisit this.
|
|
*/
|
|
if (is_hyp_ctxt(vcpu))
|
|
kvm_emulate_nested_eret(vcpu);
|
|
else
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int handle_svc(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
|
|
* 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
|
|
* we should only have to deal with a 64 bit exception.
|
|
*/
|
|
kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
return 1;
|
|
}
|
|
|
|
static int kvm_handle_gcs(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* We don't expect GCS, so treat it with contempt */
|
|
if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, GCS, IMP))
|
|
WARN_ON_ONCE(1);
|
|
|
|
kvm_inject_undefined(vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int handle_other(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool allowed, fwd = is_nested_ctxt(vcpu);
|
|
u64 hcrx = __vcpu_sys_reg(vcpu, HCRX_EL2);
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
u64 iss = ESR_ELx_ISS(esr);
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
/*
|
|
* We only trap for two reasons:
|
|
*
|
|
* - the feature is disabled, and the only outcome is to
|
|
* generate an UNDEF.
|
|
*
|
|
* - the feature is enabled, but a NV guest wants to trap the
|
|
* feature used by its L2 guest. We forward the exception in
|
|
* this case.
|
|
*
|
|
* What we don't expect is to end-up here if the guest is
|
|
* expected be be able to directly use the feature, hence the
|
|
* WARN_ON below.
|
|
*/
|
|
switch (iss) {
|
|
case ESR_ELx_ISS_OTHER_ST64BV:
|
|
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V);
|
|
fwd &= !(hcrx & HCRX_EL2_EnASR);
|
|
break;
|
|
case ESR_ELx_ISS_OTHER_ST64BV0:
|
|
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA);
|
|
fwd &= !(hcrx & HCRX_EL2_EnAS0);
|
|
break;
|
|
case ESR_ELx_ISS_OTHER_LDST64B:
|
|
allowed = kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64);
|
|
fwd &= !(hcrx & HCRX_EL2_EnALS);
|
|
break;
|
|
case ESR_ELx_ISS_OTHER_TSBCSYNC:
|
|
allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, TRBE_V1P1);
|
|
fwd &= (__vcpu_sys_reg(vcpu, HFGITR2_EL2) & HFGITR2_EL2_TSBCSYNC);
|
|
break;
|
|
case ESR_ELx_ISS_OTHER_PSBCSYNC:
|
|
allowed = kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P5);
|
|
fwd &= (__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_PSBCSYNC);
|
|
break;
|
|
default:
|
|
/* Clearly, we're missing something. */
|
|
WARN_ON_ONCE(1);
|
|
allowed = false;
|
|
}
|
|
|
|
WARN_ON_ONCE(allowed && !fwd);
|
|
|
|
if (allowed && fwd)
|
|
kvm_inject_nested_sync(vcpu, esr);
|
|
else
|
|
kvm_inject_undefined(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static exit_handle_fn arm_exit_handlers[] = {
|
|
[0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
|
|
[ESR_ELx_EC_WFx] = kvm_handle_wfx,
|
|
[ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
|
|
[ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
|
|
[ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
|
|
[ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
|
|
[ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
|
|
[ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
|
|
[ESR_ELx_EC_OTHER] = handle_other,
|
|
[ESR_ELx_EC_HVC32] = handle_hvc,
|
|
[ESR_ELx_EC_SMC32] = handle_smc,
|
|
[ESR_ELx_EC_HVC64] = handle_hvc,
|
|
[ESR_ELx_EC_SMC64] = handle_smc,
|
|
[ESR_ELx_EC_SVC64] = handle_svc,
|
|
[ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
|
|
[ESR_ELx_EC_SVE] = handle_sve,
|
|
[ESR_ELx_EC_ERET] = kvm_handle_eret,
|
|
[ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
|
|
[ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
|
|
[ESR_ELx_EC_DABT_CUR] = kvm_handle_vncr_abort,
|
|
[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
|
|
[ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd,
|
|
[ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
|
|
[ESR_ELx_EC_GCS] = kvm_handle_gcs,
|
|
};
|
|
|
|
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 esr = kvm_vcpu_get_esr(vcpu);
|
|
u8 esr_ec = ESR_ELx_EC(esr);
|
|
|
|
return arm_exit_handlers[esr_ec];
|
|
}
|
|
|
|
/*
|
|
* We may be single-stepping an emulated instruction. If the emulation
|
|
* has been completed in the kernel, we can return to userspace with a
|
|
* KVM_EXIT_DEBUG, otherwise userspace needs to complete its
|
|
* emulation first.
|
|
*/
|
|
static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
|
|
{
|
|
int handled;
|
|
|
|
/*
|
|
* See ARM ARM B1.14.1: "Hyp traps on instructions
|
|
* that fail their condition code check"
|
|
*/
|
|
if (!kvm_condition_valid(vcpu)) {
|
|
kvm_incr_pc(vcpu);
|
|
handled = 1;
|
|
} else {
|
|
exit_handle_fn exit_handler;
|
|
|
|
exit_handler = kvm_get_exit_handler(vcpu);
|
|
handled = exit_handler(vcpu);
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
/*
|
|
* Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
|
|
* proper exit to userspace.
|
|
*/
|
|
int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
if (ARM_SERROR_PENDING(exception_index)) {
|
|
/*
|
|
* The SError is handled by handle_exit_early(). If the guest
|
|
* survives it will re-execute the original instruction.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
exception_index = ARM_EXCEPTION_CODE(exception_index);
|
|
|
|
switch (exception_index) {
|
|
case ARM_EXCEPTION_IRQ:
|
|
return 1;
|
|
case ARM_EXCEPTION_EL1_SERROR:
|
|
return 1;
|
|
case ARM_EXCEPTION_TRAP:
|
|
return handle_trap_exceptions(vcpu);
|
|
case ARM_EXCEPTION_HYP_GONE:
|
|
/*
|
|
* EL2 has been reset to the hyp-stub. This happens when a guest
|
|
* is pre-emptied by kvm_reboot()'s shutdown call.
|
|
*/
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
return 0;
|
|
case ARM_EXCEPTION_IL:
|
|
/*
|
|
* We attempted an illegal exception return. Guest state must
|
|
* have been corrupted somehow. Give up.
|
|
*/
|
|
run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
return -EINVAL;
|
|
default:
|
|
kvm_pr_unimpl("Unsupported exception type: %d",
|
|
exception_index);
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* For exit types that need handling before we can be preempted */
|
|
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
|
|
{
|
|
if (ARM_SERROR_PENDING(exception_index)) {
|
|
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
|
|
u64 disr = kvm_vcpu_get_disr(vcpu);
|
|
|
|
kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
|
|
} else {
|
|
kvm_inject_serror(vcpu);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
exception_index = ARM_EXCEPTION_CODE(exception_index);
|
|
|
|
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
|
|
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
|
|
}
|
|
|
|
static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
|
|
{
|
|
kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
|
|
(void *)(panic_addr + kaslr_offset()));
|
|
}
|
|
|
|
static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
|
|
{
|
|
print_nvhe_hyp_panic("CFI failure", panic_addr);
|
|
|
|
if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
|
|
kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
|
|
}
|
|
|
|
void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
|
|
u64 elr_virt, u64 elr_phys,
|
|
u64 par, uintptr_t vcpu,
|
|
u64 far, u64 hpfar) {
|
|
u64 elr_in_kimg = __phys_to_kimg(elr_phys);
|
|
u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
|
|
u64 mode = spsr & PSR_MODE_MASK;
|
|
u64 panic_addr = elr_virt + hyp_offset;
|
|
|
|
if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
|
|
kvm_err("Invalid host exception to nVHE hyp!\n");
|
|
} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
|
|
esr_brk_comment(esr) == BUG_BRK_IMM) {
|
|
const char *file = NULL;
|
|
unsigned int line = 0;
|
|
|
|
/* All hyp bugs, including warnings, are treated as fatal. */
|
|
if (!is_protected_kvm_enabled() ||
|
|
IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
|
|
struct bug_entry *bug = find_bug(elr_in_kimg);
|
|
|
|
if (bug)
|
|
bug_get_file_line(bug, &file, &line);
|
|
}
|
|
|
|
if (file)
|
|
kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
|
|
else
|
|
print_nvhe_hyp_panic("BUG", panic_addr);
|
|
} else if (IS_ENABLED(CONFIG_CFI) && esr_is_cfi_brk(esr)) {
|
|
kvm_nvhe_report_cfi_failure(panic_addr);
|
|
} else if (IS_ENABLED(CONFIG_UBSAN_KVM_EL2) &&
|
|
ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
|
|
esr_is_ubsan_brk(esr)) {
|
|
print_nvhe_hyp_panic(report_ubsan_failure(esr & UBSAN_BRK_MASK),
|
|
panic_addr);
|
|
} else {
|
|
print_nvhe_hyp_panic("panic", panic_addr);
|
|
}
|
|
|
|
/* Dump the nVHE hypervisor backtrace */
|
|
kvm_nvhe_dump_backtrace(hyp_offset);
|
|
|
|
/* Dump the faulting instruction */
|
|
dump_kernel_instr(panic_addr + kaslr_offset());
|
|
|
|
/*
|
|
* Hyp has panicked and we're going to handle that by panicking the
|
|
* kernel. The kernel offset will be revealed in the panic so we're
|
|
* also safe to reveal the hyp offset as a debugging aid for translating
|
|
* hyp VAs to vmlinux addresses.
|
|
*/
|
|
kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
|
|
|
|
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
|
|
spsr, elr_virt, esr, far, hpfar, par, vcpu);
|
|
}
|