linux-yocto/arch/arm64/kvm/hyp/vhe/switch.c
Oliver Upton 05d9f34083 KVM: arm64: nv: Exclude guest's TWED configuration when TWE isn't set
Ignore the guest hypervisor's configured TWE delay if it hasn't actually
requested WFE traps. Otherwise, OR'ing these fields into the effective
HCR when the guest sets TWE is safe as KVM doesn't use FEAT_TWED and
leaves the fields initialized to 0.

Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-09-19 14:01:35 +01:00

689 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/switch.h>
#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <linux/percpu.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/vectors.h>
/* VHE specific context */
DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
/*
* HCR_EL2 bits that the NV guest can freely change (no RES0/RES1
* semantics, irrespective of the configuration), but that cannot be
* applied to the actual HW as things would otherwise break badly.
*
* - TGE: we want the guest to use EL1, which is incompatible with
* this bit being set
*
* - API/APK: they are already accounted for by vcpu_load(), and can
* only take effect across a load/put cycle (such as ERET)
*
* - FIEN: no way we let a guest have access to the RAS "Common Fault
* Injection" thing, whatever that does
*/
#define NV_HCR_GUEST_EXCLUDE (HCR_TGE | HCR_API | HCR_APK | HCR_FIEN)
static u64 __compute_hcr(struct kvm_vcpu *vcpu)
{
u64 guest_hcr, hcr = vcpu->arch.hcr_el2;
if (!vcpu_has_nv(vcpu))
return hcr;
/*
* We rely on the invariant that a vcpu entered from HYP
* context must also exit in the same context, as only an ERET
* instruction can kick us out of it, and we obviously trap
* that sucker. PSTATE.M will get fixed-up on exit.
*/
if (is_hyp_ctxt(vcpu)) {
host_data_set_flag(VCPU_IN_HYP_CONTEXT);
hcr |= HCR_NV | HCR_NV2 | HCR_AT | HCR_TTLB;
if (!vcpu_el2_e2h_is_set(vcpu))
hcr |= HCR_NV1;
/*
* Nothing in HCR_EL2 should impact running in hypervisor
* context, apart from bits we have defined as RESx (E2H,
* HCD and co), or that cannot be set directly (the EXCLUDE
* bits). Given that we OR the guest's view with the host's,
* we can use the 0 value as the starting point, and only
* use the config-driven RES1 bits.
*/
guest_hcr = kvm_vcpu_apply_reg_masks(vcpu, HCR_EL2, 0);
write_sysreg_s(vcpu->arch.ctxt.vncr_array, SYS_VNCR_EL2);
} else {
host_data_clear_flag(VCPU_IN_HYP_CONTEXT);
guest_hcr = __vcpu_sys_reg(vcpu, HCR_EL2);
if (guest_hcr & HCR_NV) {
u64 va = __fix_to_virt(vncr_fixmap(smp_processor_id()));
/* Inherit the low bits from the actual register */
va |= __vcpu_sys_reg(vcpu, VNCR_EL2) & GENMASK(PAGE_SHIFT - 1, 0);
write_sysreg_s(va, SYS_VNCR_EL2);
/* Force NV2 in case the guest is forgetful... */
guest_hcr |= HCR_NV2;
}
/*
* Exclude the guest's TWED configuration if it hasn't set TWE
* to avoid potentially delaying traps for the host.
*/
if (!(guest_hcr & HCR_TWE))
guest_hcr &= ~(HCR_EL2_TWEDEn | HCR_EL2_TWEDEL);
}
BUG_ON(host_data_test_flag(VCPU_IN_HYP_CONTEXT) &&
host_data_test_flag(L1_VNCR_MAPPED));
return hcr | (guest_hcr & ~NV_HCR_GUEST_EXCLUDE);
}
static void __activate_traps(struct kvm_vcpu *vcpu)
{
u64 val;
___activate_traps(vcpu, __compute_hcr(vcpu));
if (has_cntpoff()) {
struct timer_map map;
get_timer_map(vcpu, &map);
/*
* We're entrering the guest. Reload the correct
* values from memory now that TGE is clear.
*/
if (map.direct_ptimer == vcpu_ptimer(vcpu))
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
if (map.direct_ptimer == vcpu_hptimer(vcpu))
val = __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
if (map.direct_ptimer) {
write_sysreg_el0(val, SYS_CNTP_CVAL);
isb();
}
}
__activate_cptr_traps(vcpu);
write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el1);
}
NOKPROBE_SYMBOL(__activate_traps);
static void __deactivate_traps(struct kvm_vcpu *vcpu)
{
const char *host_vectors = vectors;
___deactivate_traps(vcpu);
write_sysreg_hcr(HCR_HOST_VHE_FLAGS);
if (has_cntpoff()) {
struct timer_map map;
u64 val, offset;
get_timer_map(vcpu, &map);
/*
* We're exiting the guest. Save the latest CVAL value
* to memory and apply the offset now that TGE is set.
*/
val = read_sysreg_el0(SYS_CNTP_CVAL);
if (map.direct_ptimer == vcpu_ptimer(vcpu))
__vcpu_assign_sys_reg(vcpu, CNTP_CVAL_EL0, val);
if (map.direct_ptimer == vcpu_hptimer(vcpu))
__vcpu_assign_sys_reg(vcpu, CNTHP_CVAL_EL2, val);
offset = read_sysreg_s(SYS_CNTPOFF_EL2);
if (map.direct_ptimer && offset) {
write_sysreg_el0(val + offset, SYS_CNTP_CVAL);
isb();
}
}
/*
* ARM errata 1165522 and 1530923 require the actual execution of the
* above before we can switch to the EL2/EL0 translation regime used by
* the host.
*/
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
__deactivate_cptr_traps(vcpu);
if (!arm64_kernel_unmapped_at_el0())
host_vectors = __this_cpu_read(this_cpu_vector);
write_sysreg(host_vectors, vbar_el1);
}
NOKPROBE_SYMBOL(__deactivate_traps);
/*
* Disable IRQs in __vcpu_{load,put}_{activate,deactivate}_traps() to
* prevent a race condition between context switching of PMUSERENR_EL0
* in __{activate,deactivate}_traps_common() and IPIs that attempts to
* update PMUSERENR_EL0. See also kvm_set_pmuserenr().
*/
static void __vcpu_load_activate_traps(struct kvm_vcpu *vcpu)
{
unsigned long flags;
local_irq_save(flags);
__activate_traps_common(vcpu);
local_irq_restore(flags);
}
static void __vcpu_put_deactivate_traps(struct kvm_vcpu *vcpu)
{
unsigned long flags;
local_irq_save(flags);
__deactivate_traps_common(vcpu);
local_irq_restore(flags);
}
void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu)
{
host_data_ptr(host_ctxt)->__hyp_running_vcpu = vcpu;
__vcpu_load_switch_sysregs(vcpu);
__vcpu_load_activate_traps(vcpu);
__load_stage2(vcpu->arch.hw_mmu, vcpu->arch.hw_mmu->arch);
}
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu)
{
__vcpu_put_deactivate_traps(vcpu);
__vcpu_put_switch_sysregs(vcpu);
host_data_ptr(host_ctxt)->__hyp_running_vcpu = NULL;
}
static u64 compute_emulated_cntx_ctl_el0(struct kvm_vcpu *vcpu,
enum vcpu_sysreg reg)
{
unsigned long ctl;
u64 cval, cnt;
bool stat;
switch (reg) {
case CNTP_CTL_EL0:
cval = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
ctl = __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
cnt = compute_counter_value(vcpu_ptimer(vcpu));
break;
case CNTV_CTL_EL0:
cval = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
ctl = __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
cnt = compute_counter_value(vcpu_vtimer(vcpu));
break;
default:
BUG();
}
stat = cval <= cnt;
__assign_bit(__ffs(ARCH_TIMER_CTRL_IT_STAT), &ctl, stat);
return ctl;
}
static bool kvm_hyp_handle_timer(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 esr, val;
/*
* Having FEAT_ECV allows for a better quality of timer emulation.
* However, this comes at a huge cost in terms of traps. Try and
* satisfy the reads from guest's hypervisor context without
* returning to the kernel if we can.
*/
if (!is_hyp_ctxt(vcpu))
return false;
esr = kvm_vcpu_get_esr(vcpu);
if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) != ESR_ELx_SYS64_ISS_DIR_READ)
return false;
switch (esr_sys64_to_sysreg(esr)) {
case SYS_CNTP_CTL_EL02:
val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0);
break;
case SYS_CNTP_CTL_EL0:
if (vcpu_el2_e2h_is_set(vcpu))
val = read_sysreg_el0(SYS_CNTP_CTL);
else
val = compute_emulated_cntx_ctl_el0(vcpu, CNTP_CTL_EL0);
break;
case SYS_CNTP_CVAL_EL02:
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
break;
case SYS_CNTP_CVAL_EL0:
if (vcpu_el2_e2h_is_set(vcpu)) {
val = read_sysreg_el0(SYS_CNTP_CVAL);
if (!has_cntpoff())
val -= timer_get_offset(vcpu_hptimer(vcpu));
} else {
val = __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
}
break;
case SYS_CNTPCT_EL0:
case SYS_CNTPCTSS_EL0:
val = compute_counter_value(vcpu_hptimer(vcpu));
break;
case SYS_CNTV_CTL_EL02:
val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0);
break;
case SYS_CNTV_CTL_EL0:
if (vcpu_el2_e2h_is_set(vcpu))
val = read_sysreg_el0(SYS_CNTV_CTL);
else
val = compute_emulated_cntx_ctl_el0(vcpu, CNTV_CTL_EL0);
break;
case SYS_CNTV_CVAL_EL02:
val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
break;
case SYS_CNTV_CVAL_EL0:
if (vcpu_el2_e2h_is_set(vcpu))
val = read_sysreg_el0(SYS_CNTV_CVAL);
else
val = __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
break;
case SYS_CNTVCT_EL0:
case SYS_CNTVCTSS_EL0:
val = compute_counter_value(vcpu_hvtimer(vcpu));
break;
default:
return false;
}
vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
__kvm_skip_instr(vcpu);
return true;
}
static bool kvm_hyp_handle_eret(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
u64 spsr, elr, mode;
/*
* Going through the whole put/load motions is a waste of time
* if this is a VHE guest hypervisor returning to its own
* userspace, or the hypervisor performing a local exception
* return. No need to save/restore registers, no need to
* switch S2 MMU. Just do the canonical ERET.
*
* Unless the trap has to be forwarded further down the line,
* of course...
*/
if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV) ||
(__vcpu_sys_reg(vcpu, HFGITR_EL2) & HFGITR_EL2_ERET))
return false;
spsr = read_sysreg_el1(SYS_SPSR);
mode = spsr & (PSR_MODE_MASK | PSR_MODE32_BIT);
switch (mode) {
case PSR_MODE_EL0t:
if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
return false;
break;
case PSR_MODE_EL2t:
mode = PSR_MODE_EL1t;
break;
case PSR_MODE_EL2h:
mode = PSR_MODE_EL1h;
break;
default:
return false;
}
/* If ERETAx fails, take the slow path */
if (esr_iss_is_eretax(esr)) {
if (!(vcpu_has_ptrauth(vcpu) && kvm_auth_eretax(vcpu, &elr)))
return false;
} else {
elr = read_sysreg_el1(SYS_ELR);
}
spsr = (spsr & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode;
write_sysreg_el2(spsr, SYS_SPSR);
write_sysreg_el2(elr, SYS_ELR);
return true;
}
static bool kvm_hyp_handle_tlbi_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
{
int ret = -EINVAL;
u32 instr;
u64 val;
/*
* Ideally, we would never trap on EL2 S1 TLB invalidations using
* the EL1 instructions when the guest's HCR_EL2.{E2H,TGE}=={1,1}.
* But "thanks" to FEAT_NV2, we don't trap writes to HCR_EL2,
* meaning that we can't track changes to the virtual TGE bit. So we
* have to leave HCR_EL2.TTLB set on the host. Oopsie...
*
* Try and handle these invalidation as quickly as possible, without
* fully exiting. Note that we don't need to consider any forwarding
* here, as having E2H+TGE set is the very definition of being
* InHost.
*
* For the lesser hypervisors out there that have failed to get on
* with the VHE program, we can also handle the nVHE style of EL2
* invalidation.
*/
if (!(is_hyp_ctxt(vcpu)))
return false;
instr = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
if ((kvm_supported_tlbi_s1e1_op(vcpu, instr) &&
vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) ||
kvm_supported_tlbi_s1e2_op (vcpu, instr))
ret = __kvm_tlbi_s1e2(NULL, val, instr);
if (ret)
return false;
/*
* If we have to check for any VNCR mapping being invalidated,
* go back to the slow path for further processing.
*/
if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu) &&
atomic_read(&vcpu->kvm->arch.vncr_map_count))
return false;
__kvm_skip_instr(vcpu);
return true;
}
static bool kvm_hyp_handle_cpacr_el1(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 esr = kvm_vcpu_get_esr(vcpu);
int rt;
if (!is_hyp_ctxt(vcpu) || esr_sys64_to_sysreg(esr) != SYS_CPACR_EL1)
return false;
rt = kvm_vcpu_sys_get_rt(vcpu);
if ((esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ) {
vcpu_set_reg(vcpu, rt, __vcpu_sys_reg(vcpu, CPTR_EL2));
} else {
vcpu_write_sys_reg(vcpu, vcpu_get_reg(vcpu, rt), CPTR_EL2);
__activate_cptr_traps(vcpu);
}
__kvm_skip_instr(vcpu);
return true;
}
static bool kvm_hyp_handle_zcr_el2(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
if (!vcpu_has_nv(vcpu))
return false;
if (sysreg != SYS_ZCR_EL2)
return false;
if (guest_owns_fp_regs())
return false;
/*
* ZCR_EL2 traps are handled in the slow path, with the expectation
* that the guest's FP context has already been loaded onto the CPU.
*
* Load the guest's FP context and unconditionally forward to the
* slow path for handling (i.e. return false).
*/
kvm_hyp_handle_fpsimd(vcpu, exit_code);
return false;
}
static bool kvm_hyp_handle_sysreg_vhe(struct kvm_vcpu *vcpu, u64 *exit_code)
{
if (kvm_hyp_handle_tlbi_el2(vcpu, exit_code))
return true;
if (kvm_hyp_handle_timer(vcpu, exit_code))
return true;
if (kvm_hyp_handle_cpacr_el1(vcpu, exit_code))
return true;
if (kvm_hyp_handle_zcr_el2(vcpu, exit_code))
return true;
return kvm_hyp_handle_sysreg(vcpu, exit_code);
}
static bool kvm_hyp_handle_impdef(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 iss;
if (!cpus_have_final_cap(ARM64_WORKAROUND_PMUV3_IMPDEF_TRAPS))
return false;
/*
* Compute a synthetic ESR for a sysreg trap. Conveniently, AFSR1_EL2
* is populated with a correct ISS for a sysreg trap. These fruity
* parts are 64bit only, so unconditionally set IL.
*/
iss = ESR_ELx_ISS(read_sysreg_s(SYS_AFSR1_EL2));
vcpu->arch.fault.esr_el2 = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SYS64) |
FIELD_PREP(ESR_ELx_ISS_MASK, iss) |
ESR_ELx_IL;
return false;
}
static const exit_handler_fn hyp_exit_handlers[] = {
[0 ... ESR_ELx_EC_MAX] = NULL,
[ESR_ELx_EC_CP15_32] = kvm_hyp_handle_cp15_32,
[ESR_ELx_EC_SYS64] = kvm_hyp_handle_sysreg_vhe,
[ESR_ELx_EC_SVE] = kvm_hyp_handle_fpsimd,
[ESR_ELx_EC_FP_ASIMD] = kvm_hyp_handle_fpsimd,
[ESR_ELx_EC_IABT_LOW] = kvm_hyp_handle_iabt_low,
[ESR_ELx_EC_DABT_LOW] = kvm_hyp_handle_dabt_low,
[ESR_ELx_EC_WATCHPT_LOW] = kvm_hyp_handle_watchpt_low,
[ESR_ELx_EC_ERET] = kvm_hyp_handle_eret,
[ESR_ELx_EC_MOPS] = kvm_hyp_handle_mops,
/* Apple shenanigans */
[0x3F] = kvm_hyp_handle_impdef,
};
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
synchronize_vcpu_pstate(vcpu, exit_code);
/*
* If we were in HYP context on entry, adjust the PSTATE view
* so that the usual helpers work correctly. This enforces our
* invariant that the guest's HYP context status is preserved
* across a run.
*/
if (vcpu_has_nv(vcpu) &&
unlikely(host_data_test_flag(VCPU_IN_HYP_CONTEXT))) {
u64 mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
switch (mode) {
case PSR_MODE_EL1t:
mode = PSR_MODE_EL2t;
break;
case PSR_MODE_EL1h:
mode = PSR_MODE_EL2h;
break;
}
*vcpu_cpsr(vcpu) &= ~(PSR_MODE_MASK | PSR_MODE32_BIT);
*vcpu_cpsr(vcpu) |= mode;
}
/* Apply extreme paranoia! */
BUG_ON(vcpu_has_nv(vcpu) &&
!!host_data_test_flag(VCPU_IN_HYP_CONTEXT) != is_hyp_ctxt(vcpu));
return __fixup_guest_exit(vcpu, exit_code, hyp_exit_handlers);
}
/* Switch to the guest for VHE systems running in EL2 */
static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
u64 exit_code;
host_ctxt = host_data_ptr(host_ctxt);
guest_ctxt = &vcpu->arch.ctxt;
fpsimd_lazy_switch_to_guest(vcpu);
sysreg_save_host_state_vhe(host_ctxt);
/*
* Note that ARM erratum 1165522 requires us to configure both stage 1
* and stage 2 translation for the guest context before we clear
* HCR_EL2.TGE. The stage 1 and stage 2 guest context has already been
* loaded on the CPU in kvm_vcpu_load_vhe().
*/
__activate_traps(vcpu);
__kvm_adjust_pc(vcpu);
sysreg_restore_guest_state_vhe(guest_ctxt);
__debug_switch_to_guest(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
sysreg_save_guest_state_vhe(guest_ctxt);
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
__debug_switch_to_host(vcpu);
/*
* Ensure that all system register writes above have taken effect
* before returning to the host. In VHE mode, CPTR traps for
* FPSIMD/SVE/SME also apply to EL2, so FPSIMD/SVE/SME state must be
* manipulated after the ISB.
*/
isb();
fpsimd_lazy_switch_to_host(vcpu);
if (guest_owns_fp_regs())
__fpsimd_save_fpexc32(vcpu);
return exit_code;
}
NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
{
int ret;
local_daif_mask();
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
*/
pmr_sync();
ret = __kvm_vcpu_run_vhe(vcpu);
/*
* local_daif_restore() takes care to properly restore PSTATE.DAIF
* and the GIC PMR if the host is using IRQ priorities.
*/
local_daif_restore(DAIF_PROCCTX_NOIRQ);
return ret;
}
static void __noreturn __hyp_call_panic(u64 spsr, u64 elr, u64 par)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_vcpu *vcpu;
host_ctxt = host_data_ptr(host_ctxt);
vcpu = host_ctxt->__hyp_running_vcpu;
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n",
spsr, elr,
read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
NOKPROBE_SYMBOL(__hyp_call_panic);
void __noreturn hyp_panic(void)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 elr = read_sysreg_el2(SYS_ELR);
u64 par = read_sysreg_par();
__hyp_call_panic(spsr, elr, par);
}
asmlinkage void kvm_unexpected_el2_exception(void)
{
__kvm_unexpected_el2_exception();
}