linux-yocto/fs/pidfs.c
Christian Brauner 123bcd8f42 pidfs: improve multi-threaded exec and premature thread-group leader exit polling
[ Upstream commit 0fb482728b ]

This is another attempt trying to make pidfd polling for multi-threaded
exec and premature thread-group leader exit consistent.

A quick recap of these two cases:

(1) During a multi-threaded exec by a subthread, i.e., non-thread-group
    leader thread, all other threads in the thread-group including the
    thread-group leader are killed and the struct pid of the
    thread-group leader will be taken over by the subthread that called
    exec. IOW, two tasks change their TIDs.

(2) A premature thread-group leader exit means that the thread-group
    leader exited before all of the other subthreads in the thread-group
    have exited.

Both cases lead to inconsistencies for pidfd polling with PIDFD_THREAD.
Any caller that holds a PIDFD_THREAD pidfd to the current thread-group
leader may or may not see an exit notification on the file descriptor
depending on when poll is performed. If the poll is performed before the
exec of the subthread has concluded an exit notification is generated
for the old thread-group leader. If the poll is performed after the exec
of the subthread has concluded no exit notification is generated for the
old thread-group leader.

The correct behavior would be to simply not generate an exit
notification on the struct pid of a subhthread exec because the struct
pid is taken over by the subthread and thus remains alive.

But this is difficult to handle because a thread-group may exit
prematurely as mentioned in (2). In that case an exit notification is
reliably generated but the subthreads may continue to run for an
indeterminate amount of time and thus also may exec at some point.

So far there was no way to distinguish between (1) and (2) internally.
This tiny series tries to address this problem by discarding
PIDFD_THREAD notification on premature thread-group leader exit.

If that works correctly then no exit notifications are generated for a
PIDFD_THREAD pidfd for a thread-group leader until all subthreads have
been reaped. If a subthread should exec aftewards no exit notification
will be generated until that task exits or it creates subthreads and
repeates the cycle.

Co-Developed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20250320-work-pidfs-thread_group-v4-1-da678ce805bf@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-05-29 11:02:09 +02:00

419 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/pid.h>
#include <linux/pidfs.h>
#include <linux/pid_namespace.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/proc_ns.h>
#include <linux/pseudo_fs.h>
#include <linux/ptrace.h>
#include <linux/seq_file.h>
#include <uapi/linux/pidfd.h>
#include <linux/ipc_namespace.h>
#include <linux/time_namespace.h>
#include <linux/utsname.h>
#include <net/net_namespace.h>
#include "internal.h"
#include "mount.h"
#ifdef CONFIG_PROC_FS
/**
* pidfd_show_fdinfo - print information about a pidfd
* @m: proc fdinfo file
* @f: file referencing a pidfd
*
* Pid:
* This function will print the pid that a given pidfd refers to in the
* pid namespace of the procfs instance.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its pid. This is
* similar to calling getppid() on a process whose parent is outside of
* its pid namespace.
*
* NSpid:
* If pid namespaces are supported then this function will also print
* the pid of a given pidfd refers to for all descendant pid namespaces
* starting from the current pid namespace of the instance, i.e. the
* Pid field and the first entry in the NSpid field will be identical.
* If the pid namespace of the process is not a descendant of the pid
* namespace of the procfs instance 0 will be shown as its first NSpid
* entry and no others will be shown.
* Note that this differs from the Pid and NSpid fields in
* /proc/<pid>/status where Pid and NSpid are always shown relative to
* the pid namespace of the procfs instance. The difference becomes
* obvious when sending around a pidfd between pid namespaces from a
* different branch of the tree, i.e. where no ancestral relation is
* present between the pid namespaces:
* - create two new pid namespaces ns1 and ns2 in the initial pid
* namespace (also take care to create new mount namespaces in the
* new pid namespace and mount procfs)
* - create a process with a pidfd in ns1
* - send pidfd from ns1 to ns2
* - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
* have exactly one entry, which is 0
*/
static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
{
struct pid *pid = pidfd_pid(f);
struct pid_namespace *ns;
pid_t nr = -1;
if (likely(pid_has_task(pid, PIDTYPE_PID))) {
ns = proc_pid_ns(file_inode(m->file)->i_sb);
nr = pid_nr_ns(pid, ns);
}
seq_put_decimal_ll(m, "Pid:\t", nr);
#ifdef CONFIG_PID_NS
seq_put_decimal_ll(m, "\nNSpid:\t", nr);
if (nr > 0) {
int i;
/* If nr is non-zero it means that 'pid' is valid and that
* ns, i.e. the pid namespace associated with the procfs
* instance, is in the pid namespace hierarchy of pid.
* Start at one below the already printed level.
*/
for (i = ns->level + 1; i <= pid->level; i++)
seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
}
#endif
seq_putc(m, '\n');
}
#endif
/*
* Poll support for process exit notification.
*/
static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
{
struct pid *pid = pidfd_pid(file);
struct task_struct *task;
__poll_t poll_flags = 0;
poll_wait(file, &pid->wait_pidfd, pts);
/*
* Don't wake waiters if the thread-group leader exited
* prematurely. They either get notified when the last subthread
* exits or not at all if one of the remaining subthreads execs
* and assumes the struct pid of the old thread-group leader.
*/
guard(rcu)();
task = pid_task(pid, PIDTYPE_PID);
if (!task)
poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP;
else if (task->exit_state && !delay_group_leader(task))
poll_flags = EPOLLIN | EPOLLRDNORM;
return poll_flags;
}
static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct task_struct *task __free(put_task) = NULL;
struct nsproxy *nsp __free(put_nsproxy) = NULL;
struct pid *pid = pidfd_pid(file);
struct ns_common *ns_common = NULL;
struct pid_namespace *pid_ns;
if (arg)
return -EINVAL;
task = get_pid_task(pid, PIDTYPE_PID);
if (!task)
return -ESRCH;
scoped_guard(task_lock, task) {
nsp = task->nsproxy;
if (nsp)
get_nsproxy(nsp);
}
if (!nsp)
return -ESRCH; /* just pretend it didn't exist */
/*
* We're trying to open a file descriptor to the namespace so perform a
* filesystem cred ptrace check. Also, we mirror nsfs behavior.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
return -EACCES;
switch (cmd) {
/* Namespaces that hang of nsproxy. */
case PIDFD_GET_CGROUP_NAMESPACE:
if (IS_ENABLED(CONFIG_CGROUPS)) {
get_cgroup_ns(nsp->cgroup_ns);
ns_common = to_ns_common(nsp->cgroup_ns);
}
break;
case PIDFD_GET_IPC_NAMESPACE:
if (IS_ENABLED(CONFIG_IPC_NS)) {
get_ipc_ns(nsp->ipc_ns);
ns_common = to_ns_common(nsp->ipc_ns);
}
break;
case PIDFD_GET_MNT_NAMESPACE:
get_mnt_ns(nsp->mnt_ns);
ns_common = to_ns_common(nsp->mnt_ns);
break;
case PIDFD_GET_NET_NAMESPACE:
if (IS_ENABLED(CONFIG_NET_NS)) {
ns_common = to_ns_common(nsp->net_ns);
get_net_ns(ns_common);
}
break;
case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
get_pid_ns(nsp->pid_ns_for_children);
ns_common = to_ns_common(nsp->pid_ns_for_children);
}
break;
case PIDFD_GET_TIME_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns);
ns_common = to_ns_common(nsp->time_ns);
}
break;
case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE:
if (IS_ENABLED(CONFIG_TIME_NS)) {
get_time_ns(nsp->time_ns_for_children);
ns_common = to_ns_common(nsp->time_ns_for_children);
}
break;
case PIDFD_GET_UTS_NAMESPACE:
if (IS_ENABLED(CONFIG_UTS_NS)) {
get_uts_ns(nsp->uts_ns);
ns_common = to_ns_common(nsp->uts_ns);
}
break;
/* Namespaces that don't hang of nsproxy. */
case PIDFD_GET_USER_NAMESPACE:
if (IS_ENABLED(CONFIG_USER_NS)) {
rcu_read_lock();
ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns)));
rcu_read_unlock();
}
break;
case PIDFD_GET_PID_NAMESPACE:
if (IS_ENABLED(CONFIG_PID_NS)) {
rcu_read_lock();
pid_ns = task_active_pid_ns(task);
if (pid_ns)
ns_common = to_ns_common(get_pid_ns(pid_ns));
rcu_read_unlock();
}
break;
default:
return -ENOIOCTLCMD;
}
if (!ns_common)
return -EOPNOTSUPP;
/* open_namespace() unconditionally consumes the reference */
return open_namespace(ns_common);
}
static const struct file_operations pidfs_file_operations = {
.poll = pidfd_poll,
#ifdef CONFIG_PROC_FS
.show_fdinfo = pidfd_show_fdinfo,
#endif
.unlocked_ioctl = pidfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
struct pid *pidfd_pid(const struct file *file)
{
if (file->f_op != &pidfs_file_operations)
return ERR_PTR(-EBADF);
return file_inode(file)->i_private;
}
static struct vfsmount *pidfs_mnt __ro_after_init;
#if BITS_PER_LONG == 32
/*
* Provide a fallback mechanism for 32-bit systems so processes remain
* reliably comparable by inode number even on those systems.
*/
static DEFINE_IDA(pidfd_inum_ida);
static int pidfs_inum(struct pid *pid, unsigned long *ino)
{
int ret;
ret = ida_alloc_range(&pidfd_inum_ida, RESERVED_PIDS + 1,
UINT_MAX, GFP_ATOMIC);
if (ret < 0)
return -ENOSPC;
*ino = ret;
return 0;
}
static inline void pidfs_free_inum(unsigned long ino)
{
if (ino > 0)
ida_free(&pidfd_inum_ida, ino);
}
#else
static inline int pidfs_inum(struct pid *pid, unsigned long *ino)
{
*ino = pid->ino;
return 0;
}
#define pidfs_free_inum(ino) ((void)(ino))
#endif
/*
* The vfs falls back to simple_setattr() if i_op->setattr() isn't
* implemented. Let's reject it completely until we have a clean
* permission concept for pidfds.
*/
static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
struct iattr *attr)
{
return -EOPNOTSUPP;
}
/*
* User space expects pidfs inodes to have no file type in st_mode.
*
* In particular, 'lsof' has this legacy logic:
*
* type = s->st_mode & S_IFMT;
* switch (type) {
* ...
* case 0:
* if (!strcmp(p, "anon_inode"))
* Lf->ntype = Ntype = N_ANON_INODE;
*
* to detect our old anon_inode logic.
*
* Rather than mess with our internal sane inode data, just fix it
* up here in getattr() by masking off the format bits.
*/
static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path,
struct kstat *stat, u32 request_mask,
unsigned int query_flags)
{
struct inode *inode = d_inode(path->dentry);
generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
stat->mode &= ~S_IFMT;
return 0;
}
static const struct inode_operations pidfs_inode_operations = {
.getattr = pidfs_getattr,
.setattr = pidfs_setattr,
};
static void pidfs_evict_inode(struct inode *inode)
{
struct pid *pid = inode->i_private;
clear_inode(inode);
put_pid(pid);
pidfs_free_inum(inode->i_ino);
}
static const struct super_operations pidfs_sops = {
.drop_inode = generic_delete_inode,
.evict_inode = pidfs_evict_inode,
.statfs = simple_statfs,
};
/*
* 'lsof' has knowledge of out historical anon_inode use, and expects
* the pidfs dentry name to start with 'anon_inode'.
*/
static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]");
}
static const struct dentry_operations pidfs_dentry_operations = {
.d_delete = always_delete_dentry,
.d_dname = pidfs_dname,
.d_prune = stashed_dentry_prune,
};
static int pidfs_init_inode(struct inode *inode, void *data)
{
inode->i_private = data;
inode->i_flags |= S_PRIVATE;
inode->i_mode |= S_IRWXU;
inode->i_op = &pidfs_inode_operations;
inode->i_fop = &pidfs_file_operations;
/*
* Inode numbering for pidfs start at RESERVED_PIDS + 1. This
* avoids collisions with the root inode which is 1 for pseudo
* filesystems.
*/
return pidfs_inum(data, &inode->i_ino);
}
static void pidfs_put_data(void *data)
{
struct pid *pid = data;
put_pid(pid);
}
static const struct stashed_operations pidfs_stashed_ops = {
.init_inode = pidfs_init_inode,
.put_data = pidfs_put_data,
};
static int pidfs_init_fs_context(struct fs_context *fc)
{
struct pseudo_fs_context *ctx;
ctx = init_pseudo(fc, PID_FS_MAGIC);
if (!ctx)
return -ENOMEM;
ctx->ops = &pidfs_sops;
ctx->dops = &pidfs_dentry_operations;
fc->s_fs_info = (void *)&pidfs_stashed_ops;
return 0;
}
static struct file_system_type pidfs_type = {
.name = "pidfs",
.init_fs_context = pidfs_init_fs_context,
.kill_sb = kill_anon_super,
};
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags)
{
struct file *pidfd_file;
struct path path;
int ret;
ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path);
if (ret < 0)
return ERR_PTR(ret);
pidfd_file = dentry_open(&path, flags, current_cred());
path_put(&path);
return pidfd_file;
}
void __init pidfs_init(void)
{
pidfs_mnt = kern_mount(&pidfs_type);
if (IS_ERR(pidfs_mnt))
panic("Failed to mount pidfs pseudo filesystem");
}