poky/scripts/pybootchartgui/pybootchartgui/draw.py
Olga Denisova f68e3e49d4 pybootchartgui: visualize /proc/net/dev network stats in graphs
This patch adds support for parsing and visualizing network interface statistics from /proc/net/dev in pybootchartgui. It introduces a new NetSample class to hold per-interface metrics, including received/transmitted bytes and their deltas over time.

The data is drawn using line and box charts in draw.py and helps to monitor
network usage during the boot process for each interface individually.

(From OE-Core rev: 9e640022c83a627bd05c23b66b658bd644b2f0d7)

Signed-off-by: denisova-ok <denisova.olga.k@yandex.ru>
Signed-off-by: Mathieu Dubois-Briand <mathieu.dubois-briand@bootlin.com>
Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org>
2025-04-24 11:27:06 +01:00

1164 lines
41 KiB
Python

# This file is part of pybootchartgui.
# pybootchartgui is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# pybootchartgui is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.
import cairo
import math
import re
import random
import colorsys
import functools
from operator import itemgetter
class RenderOptions:
def __init__(self, app_options):
# should we render a cumulative CPU time chart
self.cumulative = True
self.charts = True
self.kernel_only = False
self.app_options = app_options
def proc_tree (self, trace):
if self.kernel_only:
return trace.kernel_tree
else:
return trace.proc_tree
# Process tree background color.
BACK_COLOR = (1.0, 1.0, 1.0, 1.0)
WHITE = (1.0, 1.0, 1.0, 1.0)
# Process tree border color.
BORDER_COLOR = (0.63, 0.63, 0.63, 1.0)
# Second tick line color.
TICK_COLOR = (0.92, 0.92, 0.92, 1.0)
# 5-second tick line color.
TICK_COLOR_BOLD = (0.86, 0.86, 0.86, 1.0)
# Annotation colour
ANNOTATION_COLOR = (0.63, 0.0, 0.0, 0.5)
# Text color.
TEXT_COLOR = (0.0, 0.0, 0.0, 1.0)
# Font family
FONT_NAME = "Bitstream Vera Sans"
# Title text font.
TITLE_FONT_SIZE = 18
# Default text font.
TEXT_FONT_SIZE = 12
# Axis label font.
AXIS_FONT_SIZE = 11
# Legend font.
LEGEND_FONT_SIZE = 12
# CPU load chart color.
CPU_COLOR = (0.40, 0.55, 0.70, 1.0)
# IO wait chart color.
IO_COLOR = (0.76, 0.48, 0.48, 0.5)
# Disk throughput color.
DISK_TPUT_COLOR = (0.20, 0.71, 0.20, 1.0)
BYTES_RECEIVED_COLOR = (0.0, 0.0, 1.0, 1.0)
BYTES_TRANSMITTED_COLOR = (1.0, 0.0, 0.0, 1.0)
BYTES_RECEIVE_DIFF_COLOR = (0.0, 0.0, 1.0, 0.3)
BYTES_TRANSMIT_DIFF_COLOR = (1.0, 0.0, 0.0, 0.3)
# CPU load chart color.
FILE_OPEN_COLOR = (0.20, 0.71, 0.71, 1.0)
# Mem cached color
MEM_CACHED_COLOR = CPU_COLOR
# Mem used color
MEM_USED_COLOR = IO_COLOR
# Buffers color
MEM_BUFFERS_COLOR = (0.4, 0.4, 0.4, 0.3)
# Swap color
MEM_SWAP_COLOR = DISK_TPUT_COLOR
# avg10 CPU pressure color
CPU_PRESSURE_AVG10_COLOR = (0.0, 0.0, 0.0, 1.0)
# delta total CPU pressure color
CPU_PRESSURE_TOTAL_COLOR = CPU_COLOR
# avg10 IO pressure color
IO_PRESSURE_AVG10_COLOR = (0.0, 0.0, 0.0, 1.0)
# delta total IO pressure color
IO_PRESSURE_TOTAL_COLOR = IO_COLOR
# avg10 memory pressure color
MEM_PRESSURE_AVG10_COLOR = (0.0, 0.0, 0.0, 1.0)
# delta total memory pressure color
MEM_PRESSURE_TOTAL_COLOR = DISK_TPUT_COLOR
# Process border color.
PROC_BORDER_COLOR = (0.71, 0.71, 0.71, 1.0)
# Waiting process color.
PROC_COLOR_D = (0.76, 0.48, 0.48, 0.5)
# Running process color.
PROC_COLOR_R = CPU_COLOR
# Sleeping process color.
PROC_COLOR_S = (0.94, 0.94, 0.94, 1.0)
# Stopped process color.
PROC_COLOR_T = (0.94, 0.50, 0.50, 1.0)
# Zombie process color.
PROC_COLOR_Z = (0.71, 0.71, 0.71, 1.0)
# Dead process color.
PROC_COLOR_X = (0.71, 0.71, 0.71, 0.125)
# Paging process color.
PROC_COLOR_W = (0.71, 0.71, 0.71, 0.125)
# Process label color.
PROC_TEXT_COLOR = (0.19, 0.19, 0.19, 1.0)
# Process label font.
PROC_TEXT_FONT_SIZE = 12
# Signature color.
SIG_COLOR = (0.0, 0.0, 0.0, 0.3125)
# Signature font.
SIG_FONT_SIZE = 14
# Signature text.
SIGNATURE = "http://github.com/mmeeks/bootchart"
# Process dependency line color.
DEP_COLOR = (0.75, 0.75, 0.75, 1.0)
# Process dependency line stroke.
DEP_STROKE = 1.0
# Process description date format.
DESC_TIME_FORMAT = "mm:ss.SSS"
# Cumulative coloring bits
HSV_MAX_MOD = 31
HSV_STEP = 7
# Configure task color
TASK_COLOR_CONFIGURE = (1.0, 1.0, 0.00, 1.0)
# Compile task color.
TASK_COLOR_COMPILE = (0.0, 1.00, 0.00, 1.0)
# Install task color
TASK_COLOR_INSTALL = (1.0, 0.00, 1.00, 1.0)
# Sysroot task color
TASK_COLOR_SYSROOT = (0.0, 0.00, 1.00, 1.0)
# Package task color
TASK_COLOR_PACKAGE = (0.0, 1.00, 1.00, 1.0)
# Package Write RPM/DEB/IPK task color
TASK_COLOR_PACKAGE_WRITE = (0.0, 0.50, 0.50, 1.0)
# Distinct colors used for different disk volumnes.
# If we have more volumns, colors get re-used.
VOLUME_COLORS = [
(1.0, 1.0, 0.00, 1.0),
(0.0, 1.00, 0.00, 1.0),
(1.0, 0.00, 1.00, 1.0),
(0.0, 0.00, 1.00, 1.0),
(0.0, 1.00, 1.00, 1.0),
]
# Process states
STATE_UNDEFINED = 0
STATE_RUNNING = 1
STATE_SLEEPING = 2
STATE_WAITING = 3
STATE_STOPPED = 4
STATE_ZOMBIE = 5
STATE_COLORS = [(0, 0, 0, 0), PROC_COLOR_R, PROC_COLOR_S, PROC_COLOR_D, \
PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W]
# CumulativeStats Types
STAT_TYPE_CPU = 0
STAT_TYPE_IO = 1
# Convert ps process state to an int
def get_proc_state(flag):
return "RSDTZXW".find(flag) + 1
def draw_text(ctx, text, color, x, y):
ctx.set_source_rgba(*color)
ctx.move_to(x, y)
ctx.show_text(text)
def draw_fill_rect(ctx, color, rect):
ctx.set_source_rgba(*color)
ctx.rectangle(*rect)
ctx.fill()
def draw_rect(ctx, color, rect):
ctx.set_source_rgba(*color)
ctx.rectangle(*rect)
ctx.stroke()
def draw_legend_box(ctx, label, fill_color, x, y, s):
draw_fill_rect(ctx, fill_color, (x, y - s, s, s))
draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s))
draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
def draw_legend_line(ctx, label, fill_color, x, y, s):
draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3))
ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi)
ctx.fill()
draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)
def draw_label_in_box(ctx, color, label, x, y, w, maxx):
label_w = ctx.text_extents(label)[2]
label_x = x + w / 2 - label_w / 2
if label_w + 10 > w:
label_x = x + w + 5
if label_x + label_w > maxx:
label_x = x - label_w - 5
draw_text(ctx, label, color, label_x, y)
def draw_sec_labels(ctx, options, rect, sec_w, nsecs):
ctx.set_font_size(AXIS_FONT_SIZE)
prev_x = 0
for i in range(0, rect[2] + 1, sec_w):
if ((i / sec_w) % nsecs == 0) :
if options.app_options.as_minutes :
label = "%.1f" % (i / sec_w / 60.0)
else :
label = "%d" % (i / sec_w)
label_w = ctx.text_extents(label)[2]
x = rect[0] + i - label_w/2
if x >= prev_x:
draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 2)
prev_x = x + label_w
def draw_box_ticks(ctx, rect, sec_w):
draw_rect(ctx, BORDER_COLOR, tuple(rect))
ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
for i in range(sec_w, rect[2] + 1, sec_w):
if ((i / sec_w) % 10 == 0) :
ctx.set_line_width(1.5)
elif sec_w < 5 :
continue
else :
ctx.set_line_width(1.0)
if ((i / sec_w) % 30 == 0) :
ctx.set_source_rgba(*TICK_COLOR_BOLD)
else :
ctx.set_source_rgba(*TICK_COLOR)
ctx.move_to(rect[0] + i, rect[1] + 1)
ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1)
ctx.stroke()
ctx.set_line_width(1.0)
ctx.set_line_cap(cairo.LINE_CAP_BUTT)
def draw_annotations(ctx, proc_tree, times, rect):
ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
ctx.set_source_rgba(*ANNOTATION_COLOR)
ctx.set_dash([4, 4])
for time in times:
if time is not None:
x = ((time - proc_tree.start_time) * rect[2] / proc_tree.duration)
ctx.move_to(rect[0] + x, rect[1] + 1)
ctx.line_to(rect[0] + x, rect[1] + rect[3] - 1)
ctx.stroke()
ctx.set_line_cap(cairo.LINE_CAP_BUTT)
ctx.set_dash([])
def draw_chart(ctx, color, fill, chart_bounds, data, proc_tree, data_range):
ctx.set_line_width(0.5)
x_shift = proc_tree.start_time
def transform_point_coords(point, x_base, y_base, \
xscale, yscale, x_trans, y_trans):
x = (point[0] - x_base) * xscale + x_trans
y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3]
return x, y
max_x = max (x for (x, y) in data)
max_y = max (y for (x, y) in data)
# avoid divide by zero
if max_y == 0:
max_y = 1.0
if (max_x - x_shift):
xscale = float (chart_bounds[2]) / (max_x - x_shift)
else:
xscale = float (chart_bounds[2])
# If data_range is given, scale the chart so that the value range in
# data_range matches the chart bounds exactly.
# Otherwise, scale so that the actual data matches the chart bounds.
if data_range and (data_range[1] - data_range[0]):
yscale = float(chart_bounds[3]) / (data_range[1] - data_range[0])
ybase = data_range[0]
else:
yscale = float(chart_bounds[3]) / max_y
ybase = 0
first = transform_point_coords (data[0], x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
last = transform_point_coords (data[-1], x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
ctx.set_source_rgba(*color)
ctx.move_to(*first)
for point in data:
x, y = transform_point_coords (point, x_shift, ybase, xscale, yscale, \
chart_bounds[0], chart_bounds[1])
ctx.line_to(x, y)
if fill:
ctx.stroke_preserve()
ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3])
ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3])
ctx.line_to(first[0], first[1])
ctx.fill()
else:
ctx.stroke()
ctx.set_line_width(1.0)
bar_h = 55
meminfo_bar_h = 2 * bar_h
header_h = 60
# offsets
off_x, off_y = 220, 10
sec_w_base = 1 # the width of a second
proc_h = 16 # the height of a process
leg_s = 10
MIN_IMG_W = 800
CUML_HEIGHT = 2000 # Increased value to accommodate CPU and I/O Graphs
OPTIONS = None
def extents(options, xscale, trace):
start = min(trace.start.keys())
end = start
processes = 0
for proc in trace.processes:
if not options.app_options.show_all and \
trace.processes[proc][1] - trace.processes[proc][0] < options.app_options.mintime:
continue
if trace.processes[proc][1] > end:
end = trace.processes[proc][1]
processes += 1
if trace.min is not None and trace.max is not None:
start = trace.min
end = trace.max
w = int ((end - start) * sec_w_base * xscale) + 2 * off_x
h = proc_h * processes + header_h + 2 * off_y
if options.charts:
if trace.cpu_stats:
h += 30 + bar_h
if trace.disk_stats:
h += 30 + bar_h
if trace.cpu_pressure:
h += 30 + bar_h
if trace.io_pressure:
h += 30 + bar_h
if trace.mem_pressure:
h += 30 + bar_h
if trace.monitor_disk:
h += 30 + bar_h
if trace.mem_stats:
h += meminfo_bar_h
# Allow for width of process legend and offset
if w < (720 + off_x):
w = 720 + off_x
return (w, h)
def clip_visible(clip, rect):
xmax = max (clip[0], rect[0])
ymax = max (clip[1], rect[1])
xmin = min (clip[0] + clip[2], rect[0] + rect[2])
ymin = min (clip[1] + clip[3], rect[1] + rect[3])
return (xmin > xmax and ymin > ymax)
def render_charts(ctx, options, clip, trace, curr_y, w, h, sec_w):
proc_tree = options.proc_tree(trace)
# render bar legend
if trace.cpu_stats:
ctx.set_font_size(LEGEND_FONT_SIZE)
draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, curr_y+20, leg_s)
# render I/O wait
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, IO_COLOR, True, chart_rect, \
[(sample.time, sample.user + sample.sys + sample.io) for sample in trace.cpu_stats], \
proc_tree, None)
# render CPU load
draw_chart (ctx, CPU_COLOR, True, chart_rect, \
[(sample.time, sample.user + sample.sys) for sample in trace.cpu_stats], \
proc_tree, None)
curr_y = curr_y + 30 + bar_h
# render second chart
if trace.disk_stats:
draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, curr_y+20, leg_s)
# render I/O utilization
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, IO_COLOR, True, chart_rect, \
[(sample.time, sample.util) for sample in trace.disk_stats], \
proc_tree, None)
# render disk throughput
max_sample = max (trace.disk_stats, key = lambda s: s.tput)
if clip_visible (clip, chart_rect):
draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \
[(sample.time, sample.tput) for sample in trace.disk_stats], \
proc_tree, None)
pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / proc_tree.duration)
shift_x, shift_y = -20, 20
if (pos_x < off_x + 245):
shift_x, shift_y = 5, 40
label = "%dMB/s" % round ((max_sample.tput) / 1024.0)
draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y + shift_y)
curr_y = curr_y + 30 + bar_h
if trace.net_stats:
for iface, samples in trace.net_stats.items():
max_received_sample = max(samples, key=lambda s: s.received_bytes)
max_transmitted_sample = max(samples, key=lambda s: s.transmitted_bytes)
max_receive_diff_sample = max(samples, key=lambda s: s.receive_diff)
max_transmit_diff_sample = max(samples, key=lambda s: s.transmit_diff)
draw_text(ctx, "Iface: %s" % (iface), TEXT_COLOR, off_x, curr_y+20)
draw_legend_line(ctx, "Bytes received (max %d)" % (max_received_sample.received_bytes),
BYTES_RECEIVED_COLOR, off_x+150, curr_y+20, leg_s)
draw_legend_line(ctx, "Bytes transmitted (max %d)" % (max_transmitted_sample.transmitted_bytes),
BYTES_TRANSMITTED_COLOR, off_x+400, curr_y+20, leg_s)
draw_legend_box(ctx, "Bytes receive diff (max %d)" % (max_receive_diff_sample.receive_diff),
BYTES_RECEIVE_DIFF_COLOR, off_x+650, curr_y+20, leg_s)
draw_legend_box(ctx, "Bytes transmit diff (max %d)" % (max_transmit_diff_sample.transmit_diff),
BYTES_TRANSMIT_DIFF_COLOR, off_x+900, curr_y+20, leg_s)
chart_rect = (off_x, curr_y + 30, w, bar_h)
if clip_visible(clip, chart_rect):
draw_box_ticks(ctx, chart_rect, sec_w)
draw_annotations(ctx, proc_tree, trace.times, chart_rect)
if clip_visible (clip, chart_rect):
draw_chart (ctx, BYTES_RECEIVED_COLOR, False, chart_rect, \
[(sample.time, sample.received_bytes) for sample in samples], \
proc_tree, None)
draw_chart (ctx, BYTES_TRANSMITTED_COLOR, False, chart_rect, \
[(sample.time, sample.transmitted_bytes) for sample in samples], \
proc_tree, None)
if clip_visible (clip, chart_rect):
draw_chart (ctx, BYTES_RECEIVE_DIFF_COLOR, True, chart_rect, \
[(sample.time, sample.receive_diff) for sample in samples], \
proc_tree, None)
draw_chart (ctx, BYTES_TRANSMIT_DIFF_COLOR, True, chart_rect, \
[(sample.time, sample.transmit_diff) for sample in samples], \
proc_tree, None)
curr_y = curr_y + 30 + bar_h
# render CPU pressure chart
if trace.cpu_pressure:
max_sample_avg = max (trace.cpu_pressure, key = lambda s: s.avg10)
max_sample_total = max (trace.cpu_pressure, key = lambda s: s.deltaTotal)
draw_legend_line(ctx, "avg10 CPU Pressure (max %d%%)" % (max_sample_avg.avg10), CPU_PRESSURE_AVG10_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "delta total CPU Pressure (max %d)" % (max_sample_total.deltaTotal), CPU_PRESSURE_TOTAL_COLOR, off_x + 240, curr_y+20, leg_s)
# render delta total cpu
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, CPU_PRESSURE_TOTAL_COLOR, True, chart_rect, \
[(sample.time, sample.deltaTotal) for sample in trace.cpu_pressure], \
proc_tree, None)
# render avg10 cpu
if clip_visible (clip, chart_rect):
draw_chart (ctx, CPU_PRESSURE_AVG10_COLOR, False, chart_rect, \
[(sample.time, sample.avg10) for sample in trace.cpu_pressure], \
proc_tree, None)
pos_x = off_x + ((max_sample_avg.time - proc_tree.start_time) * w / proc_tree.duration)
shift_x, shift_y = -20, 20
if (pos_x < off_x + 245):
shift_x, shift_y = 5, 40
label = "%d%%" % (max_sample_avg.avg10)
draw_text (ctx, label, CPU_PRESSURE_AVG10_COLOR, pos_x + shift_x, curr_y + shift_y)
curr_y = curr_y + 30 + bar_h
# render I/O pressure chart
if trace.io_pressure:
max_sample_avg = max (trace.io_pressure, key = lambda s: s.avg10)
max_sample_total = max (trace.io_pressure, key = lambda s: s.deltaTotal)
draw_legend_line(ctx, "avg10 I/O Pressure (max %d%%)" % (max_sample_avg.avg10), IO_PRESSURE_AVG10_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "delta total I/O Pressure (max %d)" % (max_sample_total.deltaTotal), IO_PRESSURE_TOTAL_COLOR, off_x + 240, curr_y+20, leg_s)
# render delta total io
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, IO_PRESSURE_TOTAL_COLOR, True, chart_rect, \
[(sample.time, sample.deltaTotal) for sample in trace.io_pressure], \
proc_tree, None)
# render avg10 io
if clip_visible (clip, chart_rect):
draw_chart (ctx, IO_PRESSURE_AVG10_COLOR, False, chart_rect, \
[(sample.time, sample.avg10) for sample in trace.io_pressure], \
proc_tree, None)
pos_x = off_x + ((max_sample_avg.time - proc_tree.start_time) * w / proc_tree.duration)
shift_x, shift_y = -20, 20
if (pos_x < off_x + 245):
shift_x, shift_y = 5, 40
label = "%d%%" % (max_sample_avg.avg10)
draw_text (ctx, label, IO_PRESSURE_AVG10_COLOR, pos_x + shift_x, curr_y + shift_y)
curr_y = curr_y + 30 + bar_h
# render MEM pressure chart
if trace.mem_pressure:
max_sample_avg = max (trace.mem_pressure, key = lambda s: s.avg10)
max_sample_total = max (trace.mem_pressure, key = lambda s: s.deltaTotal)
draw_legend_line(ctx, "avg10 MEM Pressure (max %d%%)" % (max_sample_avg.avg10), MEM_PRESSURE_AVG10_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "delta total MEM Pressure (max %d)" % (max_sample_total.deltaTotal), MEM_PRESSURE_TOTAL_COLOR, off_x + 240, curr_y+20, leg_s)
# render delta total mem
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
draw_chart (ctx, MEM_PRESSURE_TOTAL_COLOR, True, chart_rect, \
[(sample.time, sample.deltaTotal) for sample in trace.mem_pressure], \
proc_tree, None)
# render avg10 mem
if clip_visible (clip, chart_rect):
draw_chart (ctx, MEM_PRESSURE_AVG10_COLOR, False, chart_rect, \
[(sample.time, sample.avg10) for sample in trace.mem_pressure], \
proc_tree, None)
pos_x = off_x + ((max_sample_avg.time - proc_tree.start_time) * w / proc_tree.duration)
shift_x, shift_y = -20, 20
if (pos_x < off_x + 245):
shift_x, shift_y = 5, 40
label = "%d%%" % (max_sample_avg.avg10)
draw_text (ctx, label, MEM_PRESSURE_AVG10_COLOR, pos_x + shift_x, curr_y + shift_y)
curr_y = curr_y + 30 + bar_h
# render disk space usage
#
# Draws the amount of disk space used on each volume relative to the
# lowest recorded amount. The graphs for each volume are stacked above
# each other so that total disk usage is visible.
if trace.monitor_disk:
ctx.set_font_size(LEGEND_FONT_SIZE)
# Determine set of volumes for which we have
# information and the minimal amount of used disk
# space for each. Currently samples are allowed to
# not have a values for all volumes; drawing could be
# made more efficient if that wasn't the case.
volumes = set()
min_used = {}
for sample in trace.monitor_disk:
for volume, used in sample.records.items():
volumes.add(volume)
if volume not in min_used or min_used[volume] > used:
min_used[volume] = used
volumes = sorted(list(volumes))
disk_scale = 0
for i, volume in enumerate(volumes):
volume_scale = max([sample.records[volume] - min_used[volume]
for sample in trace.monitor_disk
if volume in sample.records])
# Does not take length of volume name into account, but fixed offset
# works okay in practice.
draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, volume_scale / 1024 / 1024),
VOLUME_COLORS[i % len(VOLUME_COLORS)],
off_x + i * 250, curr_y+20, leg_s)
disk_scale += volume_scale
# render used amount of disk space
chart_rect = (off_x, curr_y+30, w, bar_h)
if clip_visible (clip, chart_rect):
draw_box_ticks (ctx, chart_rect, sec_w)
draw_annotations (ctx, proc_tree, trace.times, chart_rect)
for i in range(len(volumes), 0, -1):
draw_chart (ctx, VOLUME_COLORS[(i - 1) % len(VOLUME_COLORS)], True, chart_rect, \
[(sample.time,
# Sum up used space of all volumes including the current one
# so that the graphs appear as stacked on top of each other.
functools.reduce(lambda x,y: x+y,
[sample.records[volume] - min_used[volume]
for volume in volumes[0:i]
if volume in sample.records],
0))
for sample in trace.monitor_disk], \
proc_tree, [0, disk_scale])
curr_y = curr_y + 30 + bar_h
# render mem usage
chart_rect = (off_x, curr_y+30, w, meminfo_bar_h)
mem_stats = trace.mem_stats
if mem_stats and clip_visible (clip, chart_rect):
mem_scale = max(sample.buffers for sample in mem_stats)
draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % (float(mem_scale) / 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s)
draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, curr_y+20, leg_s)
draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, curr_y+20, leg_s)
draw_legend_line(ctx, "Swap (scale: %u MiB)" % max([(sample.swap)/1024 for sample in mem_stats]), \
MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s)
draw_box_ticks(ctx, chart_rect, sec_w)
draw_annotations(ctx, proc_tree, trace.times, chart_rect)
draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \
[(sample.time, sample.buffers) for sample in trace.mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \
[(sample.time, sample.used) for sample in mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \
[(sample.time, sample.cached) for sample in mem_stats], \
proc_tree, [0, mem_scale])
draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \
[(sample.time, float(sample.swap)) for sample in mem_stats], \
proc_tree, None)
curr_y = curr_y + meminfo_bar_h
return curr_y
def render_processes_chart(ctx, options, trace, curr_y, width, h, sec_w):
chart_rect = [off_x, curr_y+header_h, width, h - curr_y - 1 * off_y - header_h ]
draw_legend_box (ctx, "Configure", \
TASK_COLOR_CONFIGURE, off_x , curr_y + 45, leg_s)
draw_legend_box (ctx, "Compile", \
TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s)
draw_legend_box (ctx, "Install", \
TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s)
draw_legend_box (ctx, "Populate Sysroot", \
TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s)
draw_legend_box (ctx, "Package", \
TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s)
draw_legend_box (ctx, "Package Write", \
TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, leg_s)
ctx.set_font_size(PROC_TEXT_FONT_SIZE)
draw_box_ticks(ctx, chart_rect, sec_w)
draw_sec_labels(ctx, options, chart_rect, sec_w, 30)
y = curr_y+header_h
offset = trace.min or min(trace.start.keys())
for start in sorted(trace.start.keys()):
for process in sorted(trace.start[start]):
elapsed_time = trace.processes[process][1] - start
if not options.app_options.show_all and \
elapsed_time < options.app_options.mintime:
continue
task = process.split(":")[1]
#print(process)
#print(trace.processes[process][1])
#print(s)
x = chart_rect[0] + (start - offset) * sec_w
w = elapsed_time * sec_w
def set_alfa(color, alfa):
clist = list(color)
clist[-1] = alfa
return tuple(clist)
#print("proc at %s %s %s %s" % (x, y, w, proc_h))
col = None
if task == "do_compile":
col = TASK_COLOR_COMPILE
elif "do_compile" in task:
col = set_alfa(TASK_COLOR_COMPILE, 0.25)
elif task == "do_configure":
col = TASK_COLOR_CONFIGURE
elif "do_configure" in task:
col = set_alfa(TASK_COLOR_CONFIGURE, 0.25)
elif task == "do_install":
col = TASK_COLOR_INSTALL
elif task == "do_populate_sysroot":
col = TASK_COLOR_SYSROOT
elif task == "do_package":
col = TASK_COLOR_PACKAGE
elif task == "do_package_write_rpm" or \
task == "do_package_write_deb" or \
task == "do_package_write_ipk":
col = TASK_COLOR_PACKAGE_WRITE
else:
col = WHITE
if col:
draw_fill_rect(ctx, col, (x, y, w, proc_h))
draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
# Show elapsed time for each task
process = "%ds %s" % (elapsed_time, process)
draw_label_in_box(ctx, PROC_TEXT_COLOR, process, x, y + proc_h - 4, w, width)
y = y + proc_h
return curr_y
#
# Render the chart.
#
def render(ctx, options, xscale, trace):
(w, h) = extents (options, xscale, trace)
global OPTIONS
OPTIONS = options.app_options
# x, y, w, h
clip = ctx.clip_extents()
sec_w = int (xscale * sec_w_base)
ctx.set_line_width(1.0)
ctx.select_font_face(FONT_NAME)
draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h))
w -= 2*off_x
curr_y = off_y;
if options.charts:
curr_y = render_charts (ctx, options, clip, trace, curr_y, w, h, sec_w)
curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, sec_w)
return
proc_tree = options.proc_tree (trace)
# draw the title and headers
if proc_tree.idle:
duration = proc_tree.idle
else:
duration = proc_tree.duration
if not options.kernel_only:
curr_y = draw_header (ctx, trace.headers, duration)
else:
curr_y = off_y;
# draw process boxes
proc_height = h
if proc_tree.taskstats and options.cumulative:
proc_height -= CUML_HEIGHT
draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times,
curr_y, w, proc_height, sec_w)
curr_y = proc_height
ctx.set_font_size(SIG_FONT_SIZE)
draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8)
# draw a cumulative CPU-time-per-process graph
if proc_tree.taskstats and options.cumulative:
cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 2)
if clip_visible (clip, cuml_rect):
draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_CPU)
# draw a cumulative I/O-time-per-process graph
if proc_tree.taskstats and options.cumulative:
cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - off_y * 2)
if clip_visible (clip, cuml_rect):
draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_IO)
def draw_process_bar_chart(ctx, clip, options, proc_tree, times, curr_y, w, h, sec_w):
header_size = 0
if not options.kernel_only:
draw_legend_box (ctx, "Running (%cpu)",
PROC_COLOR_R, off_x , curr_y + 45, leg_s)
draw_legend_box (ctx, "Unint.sleep (I/O)",
PROC_COLOR_D, off_x+120, curr_y + 45, leg_s)
draw_legend_box (ctx, "Sleeping",
PROC_COLOR_S, off_x+240, curr_y + 45, leg_s)
draw_legend_box (ctx, "Zombie",
PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s)
header_size = 45
chart_rect = [off_x, curr_y + header_size + 15,
w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h]
ctx.set_font_size (PROC_TEXT_FONT_SIZE)
draw_box_ticks (ctx, chart_rect, sec_w)
if sec_w > 100:
nsec = 1
else:
nsec = 5
draw_sec_labels (ctx, options, chart_rect, sec_w, nsec)
draw_annotations (ctx, proc_tree, times, chart_rect)
y = curr_y + 60
for root in proc_tree.process_tree:
draw_processes_recursively(ctx, root, proc_tree, y, proc_h, chart_rect, clip)
y = y + proc_h * proc_tree.num_nodes([root])
def draw_header (ctx, headers, duration):
toshow = [
('system.uname', 'uname', lambda s: s),
('system.release', 'release', lambda s: s),
('system.cpu', 'CPU', lambda s: re.sub('model name\s*:\s*', '', s, 1)),
('system.kernel.options', 'kernel options', lambda s: s),
]
header_y = ctx.font_extents()[2] + 10
ctx.set_font_size(TITLE_FONT_SIZE)
draw_text(ctx, headers['title'], TEXT_COLOR, off_x, header_y)
ctx.set_font_size(TEXT_FONT_SIZE)
for (headerkey, headertitle, mangle) in toshow:
header_y += ctx.font_extents()[2]
if headerkey in headers:
value = headers.get(headerkey)
else:
value = ""
txt = headertitle + ': ' + mangle(value)
draw_text(ctx, txt, TEXT_COLOR, off_x, header_y)
dur = duration / 100.0
txt = 'time : %02d:%05.2f' % (math.floor(dur/60), dur - 60 * math.floor(dur/60))
if headers.get('system.maxpid') is not None:
txt = txt + ' max pid: %s' % (headers.get('system.maxpid'))
header_y += ctx.font_extents()[2]
draw_text (ctx, txt, TEXT_COLOR, off_x, header_y)
return header_y
def draw_processes_recursively(ctx, proc, proc_tree, y, proc_h, rect, clip) :
x = rect[0] + ((proc.start_time - proc_tree.start_time) * rect[2] / proc_tree.duration)
w = ((proc.duration) * rect[2] / proc_tree.duration)
draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip)
draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
ipid = int(proc.pid)
if not OPTIONS.show_all:
cmdString = proc.cmd
else:
cmdString = ''
if (OPTIONS.show_pid or OPTIONS.show_all) and ipid != 0:
cmdString = cmdString + " [" + str(ipid // 1000) + "]"
if OPTIONS.show_all:
if proc.args:
cmdString = cmdString + " '" + "' '".join(proc.args) + "'"
else:
cmdString = cmdString + " " + proc.exe
draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, w, rect[0] + rect[2])
next_y = y + proc_h
for child in proc.child_list:
if next_y > clip[1] + clip[3]:
break
child_x, child_y = draw_processes_recursively(ctx, child, proc_tree, next_y, proc_h, rect, clip)
draw_process_connecting_lines(ctx, x, y, child_x, child_y, proc_h)
next_y = next_y + proc_h * proc_tree.num_nodes([child])
return x, y
def draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip):
if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]:
return
draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h))
last_tx = -1
for sample in proc.samples :
tx = rect[0] + round(((sample.time - proc_tree.start_time) * rect[2] / proc_tree.duration))
# samples are sorted chronologically
if tx < clip[0]:
continue
if tx > clip[0] + clip[2]:
break
tw = round(proc_tree.sample_period * rect[2] / float(proc_tree.duration))
if last_tx != -1 and abs(last_tx - tx) <= tw:
tw -= last_tx - tx
tx = last_tx
tw = max (tw, 1) # nice to see at least something
last_tx = tx + tw
state = get_proc_state( sample.state )
color = STATE_COLORS[state]
if state == STATE_RUNNING:
alpha = min (sample.cpu_sample.user + sample.cpu_sample.sys, 1.0)
color = tuple(list(PROC_COLOR_R[0:3]) + [alpha])
# print "render time %d [ tx %d tw %d ], sample state %s color %s alpha %g" % (sample.time, tx, tw, state, color, alpha)
elif state == STATE_SLEEPING:
continue
draw_fill_rect(ctx, color, (tx, y, tw, proc_h))
def draw_process_connecting_lines(ctx, px, py, x, y, proc_h):
ctx.set_source_rgba(*DEP_COLOR)
ctx.set_dash([2, 2])
if abs(px - x) < 3:
dep_off_x = 3
dep_off_y = proc_h / 4
ctx.move_to(x, y + proc_h / 2)
ctx.line_to(px - dep_off_x, y + proc_h / 2)
ctx.line_to(px - dep_off_x, py - dep_off_y)
ctx.line_to(px, py - dep_off_y)
else:
ctx.move_to(x, y + proc_h / 2)
ctx.line_to(px, y + proc_h / 2)
ctx.line_to(px, py)
ctx.stroke()
ctx.set_dash([])
# elide the bootchart collector - it is quite distorting
def elide_bootchart(proc):
return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle'
class CumlSample:
def __init__(self, proc):
self.cmd = proc.cmd
self.samples = []
self.merge_samples (proc)
self.color = None
def merge_samples(self, proc):
self.samples.extend (proc.samples)
self.samples.sort (key = lambda p: p.time)
def next(self):
global palette_idx
palette_idx += HSV_STEP
return palette_idx
def get_color(self):
if self.color is None:
i = self.next() % HSV_MAX_MOD
h = 0.0
if i != 0:
h = (1.0 * i) / HSV_MAX_MOD
s = 0.5
v = 1.0
c = colorsys.hsv_to_rgb (h, s, v)
self.color = (c[0], c[1], c[2], 1.0)
return self.color
def draw_cuml_graph(ctx, proc_tree, chart_bounds, duration, sec_w, stat_type):
global palette_idx
palette_idx = 0
time_hash = {}
total_time = 0.0
m_proc_list = {}
if stat_type is STAT_TYPE_CPU:
sample_value = 'cpu'
else:
sample_value = 'io'
for proc in proc_tree.process_list:
if elide_bootchart(proc):
continue
for sample in proc.samples:
total_time += getattr(sample.cpu_sample, sample_value)
if not sample.time in time_hash:
time_hash[sample.time] = 1
# merge pids with the same cmd
if not proc.cmd in m_proc_list:
m_proc_list[proc.cmd] = CumlSample (proc)
continue
s = m_proc_list[proc.cmd]
s.merge_samples (proc)
# all the sample times
times = sorted(time_hash)
if len (times) < 2:
print("degenerate boot chart")
return
pix_per_ns = chart_bounds[3] / total_time
# print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns)
# FIXME: we have duplicates in the process list too [!] - why !?
# Render bottom up, left to right
below = {}
for time in times:
below[time] = chart_bounds[1] + chart_bounds[3]
# same colors each time we render
random.seed (0)
ctx.set_line_width(1)
legends = []
labels = []
# render each pid in order
for cs in m_proc_list.values():
row = {}
cuml = 0.0
# print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len (cs.samples))
for sample in cs.samples:
cuml += getattr(sample.cpu_sample, sample_value)
row[sample.time] = cuml
process_total_time = cuml
# hide really tiny processes
if cuml * pix_per_ns <= 2:
continue
last_time = times[0]
y = last_below = below[last_time]
last_cuml = cuml = 0.0
ctx.set_source_rgba(*cs.get_color())
for time in times:
render_seg = False
# did the underlying trend increase ?
if below[time] != last_below:
last_below = below[last_time]
last_cuml = cuml
render_seg = True
# did we move up a pixel increase ?
if time in row:
nc = round (row[time] * pix_per_ns)
if nc != cuml:
last_cuml = cuml
cuml = nc
render_seg = True
# if last_cuml > cuml:
# assert fail ... - un-sorted process samples
# draw the trailing rectangle from the last time to
# before now, at the height of the last segment.
if render_seg:
w = math.ceil ((time - last_time) * chart_bounds[2] / proc_tree.duration) + 1
x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
ctx.rectangle (x, below[last_time] - last_cuml, w, last_cuml)
ctx.fill()
# ctx.stroke()
last_time = time
y = below [time] - cuml
row[time] = y
# render the last segment
x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
y = below[last_time] - cuml
ctx.rectangle (x, y, chart_bounds[2] - x, cuml)
ctx.fill()
# ctx.stroke()
# render legend if it will fit
if cuml > 8:
label = cs.cmd
extnts = ctx.text_extents(label)
label_w = extnts[2]
label_h = extnts[3]
# print "Text extents %g by %g" % (label_w, label_h)
labels.append((label,
chart_bounds[0] + chart_bounds[2] - label_w - off_x * 2,
y + (cuml + label_h) / 2))
if cs in legends:
print("ARGH - duplicate process in list !")
legends.append ((cs, process_total_time))
below = row
# render grid-lines over the top
draw_box_ticks(ctx, chart_bounds, sec_w)
# render labels
for l in labels:
draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2])
# Render legends
font_height = 20
label_width = 300
LEGENDS_PER_COL = 15
LEGENDS_TOTAL = 45
ctx.set_font_size (TITLE_FONT_SIZE)
dur_secs = duration / 100
cpu_secs = total_time / 1000000000
# misleading - with multiple CPUs ...
# idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0
if stat_type is STAT_TYPE_CPU:
label = "Cumulative CPU usage, by process; total CPU: " \
" %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
else:
label = "Cumulative I/O usage, by process; total I/O: " \
" %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x,
chart_bounds[1] + font_height)
i = 0
legends = sorted(legends, key=itemgetter(1), reverse=True)
ctx.set_font_size(TEXT_FONT_SIZE)
for t in legends:
cs = t[0]
time = t[1]
x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * label_width
y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2)
str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, (time/total_time) * 100.0)
draw_legend_box(ctx, str, cs.color, x, y, leg_s)
i = i + 1
if i >= LEGENDS_TOTAL:
break