linux-imx/drivers/ptp/ptp_netc.c
Clark Wang 3714d78dd1 LF-13648-2 ptp: ptp_netc: remove the method of setting oclk-prsc through dts
After adding the dynamic setting for oclk-prsc, we no longer need to
set the static oclk-prsc method through DTS.
So drop it.

Signed-off-by: Clark Wang <xiaoning.wang@nxp.com>
Reviewed-by: Wei Fang <wei.fang@nxp.com>
2024-10-16 14:21:12 +08:00

865 lines
22 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* NXP NETC Timer driver
* Copyright 2023 NXP
* Copyright (C) 2023 Wei Fang <wei.fang@nxp.com>
*/
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/fsl/netc_prb_ierb.h>
#include <linux/fsl/ptp_netc.h>
#define NETC_TMR_CTRL 0x0080
#define TMR_CTRL_CK_SEL GENMASK(1, 0)
#define TMR_CTRL_TE BIT(2)
#define TMR_COMP_MODE BIT(15)
#define TMR_CTRL_TCLK_PERIOD GENMASK(25, 16)
#define TMR_CTRL_FS BIT(28)
#define TMR_ALARM1P BIT(31)
#define NETC_TMR_TEVENT 0x0084
#define TMR_TEVNET_PPEN(a) BIT(7 - (a))
#define TMR_TEVENT_PPEN_ALL GENMASK(7, 5)
#define TMR_TEVENT_ALM1EN BIT(16)
#define TMR_TEVENT_ALM2EN BIT(17)
#define TMR_TEVENT_ETS1_THREN BIT(20)
#define TMR_TEVENT_ETS2_THREN BIT(21)
#define TMR_TEVENT_ETS1EN BIT(24)
#define TMR_TEVENT_ETS2EN BIT(25)
#define TMR_TEVENT_ETS1_OVEN BIT(28)
#define TMR_TEVENT_ETS2_OVEN BIT(29)
#define NETC_TMR_TEMASK 0x0088
#define NETC_TMR_STAT 0x0094
#define NETC_TMR_CNT_L 0x0098
#define NETC_TMR_CNT_H 0x009c
#define NETC_TMR_ADD 0x00a0
#define NETC_TMR_ACC 0x00a4
#define NETC_TMR_PRSC 0x00a8
#define NETC_TMR_ECTRL 0x00ac
#define NETC_TMR_OFF_L 0x00b0
#define NETC_TMR_OFF_H 0x00b4
/* a = 0 or 1, a = 0 indicates TMR_ALARM1, a = 1 indicates TMR_ALARM2 */
#define NETC_TMR_ALARM_L(a) (0x00b8 + (a) * 8)
#define NETC_TMR_ALARM_H(a) (0x00bc + (a) * 8)
#define NETC_TMR_ALARM_CTRL 0x00cc
#define ALARM_CTRL_PW(a) (GENMASK(4, 0) << (a) * 8)
#define ALARM_CTRL_PG(a) (BIT(7) << (a) * 8)
/* a = 0, 1, 2. a = 0 indicates TMR_FIPER1, a = 1 indicates TMR_FIPER2,
* a = 2 indicates TMR_FIPER3.
*/
#define NETC_TMR_FIPER(a) (0x00d0 + (a) * 4)
#define NETC_TMR_FIPER_CTRL 0x00dc
#define FIPER_CTRL_PW(a) (GENMASK(4, 0) << (a) * 8)
#define FIPER_CTRL_PG(a) (BIT(6) << (a) * 8)
#define FIPER_CTRL_DIS(a) (BIT(7) << (a) * 8)
#define NETC_TMR_ETTS1_L 0x00e0
#define NETC_TMR_ETTS1_H 0x00e4
#define NETC_TMR_ETTS2_L 0x00e8
#define NETC_TMR_ETTS2_H 0x00ec
#define NETC_TMR_PARAM 0x00f8
#define NETC_TMR_REGS_BAR 0
#define NETC_TMR_FIPER_NUM 3
#define NETC_TMR_DEFAULT_PRSC 2
#define NETC_TMR_DEFAULT_ALARM 0xffffffffffffffffULL
#define NETC_TMR_DEFAULT_FIPER 0xffffffff
#define NETC_TMR_PRSC_OCK_MAX 0xfffe
/* 1588 timer reference clock source select */
#define NETC_TMR_CCM_TIMER1 0 /* enet_timer1_clk_root, from CCM */
#define NETC_TMR_SYSTEM_CLK 1 /* enet_clk_root/2, from CCM */
#define NETC_TMR_EXT_OSC 2 /* tmr_1588_clk, from IO pins */
#define NETC_TMR_SYSCLK_RATE 333333333UL
#define NETC_TMR_SYSCLK_PERIOD_INT 3
#define NETC_TMR_SYSCLK_PERIOD_FRAC 0xd
#define NETC_TMR_FIPER_PW 0x1f
struct netc_timer {
void __iomem *base;
struct device *dev;
struct pci_dev *pci_dev;
int irq;
char irq_name[64];
spinlock_t lock; /* protect regs */
struct ptp_clock *clock;
struct ptp_clock_info caps;
int phc_index;
u32 clk_select;
u32 clk_freq;
u32 period_int;
/* fractional part of clock period * BIT(32) */
u32 period_frac;
/* High 32 bits are the integer part, low 32 bits
* are the fractional part
*/
u64 base_period;
u32 oclk_prsc; /* must be an even value */
u32 fiper[NETC_TMR_FIPER_NUM];
};
static inline u32 netc_timer_read(void __iomem *reg)
{
return ioread32(reg);
}
static inline void netc_timer_write(void __iomem *reg, u32 val)
{
iowrite32(val, reg);
}
#define netc_timer_read_reg(p, o) netc_timer_read((p)->base + (o))
#define netc_timer_write_reg(p, o, v) netc_timer_write((p)->base + (o), v)
static u64 netc_timer_cnt_read(struct netc_timer *priv)
{
u32 tmr_cnt_l, tmr_cnt_h;
u64 ns;
/* The user must read the TMR_CNC_L register first to get
* correct 64-bit TMR_CNT_H/L counter values.
*/
tmr_cnt_l = netc_timer_read_reg(priv, NETC_TMR_CNT_L);
tmr_cnt_h = netc_timer_read_reg(priv, NETC_TMR_CNT_H);
ns = (((u64)tmr_cnt_h) << 32) | tmr_cnt_l;
return ns;
}
static void netc_timer_cnt_write(struct netc_timer *priv, u64 ns)
{
u32 tmr_cnt_h = upper_32_bits(ns);
u32 tmr_cnt_l = lower_32_bits(ns);
/* The user must write to TMR_CNT_L register first. */
netc_timer_write_reg(priv, NETC_TMR_CNT_L, tmr_cnt_l);
netc_timer_write_reg(priv, NETC_TMR_CNT_H, tmr_cnt_h);
}
static void netc_timer_alarm_write(struct netc_timer *priv,
u64 alarm, int index)
{
u32 alarm_h = upper_32_bits(alarm);
u32 alarm_l = lower_32_bits(alarm);
netc_timer_write_reg(priv, NETC_TMR_ALARM_L(index), alarm_l);
netc_timer_write_reg(priv, NETC_TMR_ALARM_H(index), alarm_h);
}
static void netc_timer_set_oclk_prsc(struct netc_timer *priv, u32 oclk_prsc)
{
if (oclk_prsc < NETC_TMR_PRSC_OCK_MAX) {
if (oclk_prsc % 2 != 0)
oclk_prsc++;
} else {
oclk_prsc = NETC_TMR_PRSC_OCK_MAX;
}
priv->oclk_prsc = oclk_prsc;
if (oclk_prsc == netc_timer_read_reg(priv, NETC_TMR_PRSC))
return;
netc_timer_write_reg(priv, NETC_TMR_PRSC, priv->oclk_prsc);
}
static u32 netc_timer_calculate_fiper_pulse_width(struct netc_timer *priv,
u32 fiper)
{
u32 oclk_prsc = NETC_TMR_DEFAULT_PRSC;
u64 pw;
/* Set the FIPER pulse width to half FIPER interval by default.
* pulse_width = (fiper / 2) / TMR_GCLK_period,
* TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq,
* TMR_GCLK_freq = (clk_freq / oclk_prsc) MHz,
* so pulse_width = fiper * clk_freq / (2 * NSEC_PER_SEC * oclk_prsc).
*
* The oclk_prsc value needs to be an even number, so here we use its
* default value NETC_TMR_DEFAULT_PRSC to calculate the pw. If pw
* exceeds the maximum value, then update the oclk_prsc.
*/
pw = (u64)fiper * priv->clk_freq;
/* 2 * NSEC_PER_SEC * oclk_prsc = 4000000000UL */
pw = div_u64(pw, 4000000000UL);
/* The FIPER_PW field only has 5 bits, need to update oclk_prsc */
if (pw > NETC_TMR_FIPER_PW) {
oclk_prsc = div_u64(pw, NETC_TMR_FIPER_PW) * oclk_prsc;
pw = NETC_TMR_FIPER_PW;
}
netc_timer_set_oclk_prsc(priv, oclk_prsc);
return pw;
}
static void netc_timer_adjust_period(struct netc_timer *priv, u64 period)
{
u32 period_frac = lower_32_bits(period);
u32 period_int = upper_32_bits(period);
u32 tmr_ctrl, old_tmr_ctrl;
guard(spinlock_irqsave)(&priv->lock);
old_tmr_ctrl = netc_timer_read_reg(priv, NETC_TMR_CTRL);
tmr_ctrl = u32_replace_bits(old_tmr_ctrl, period_int,
TMR_CTRL_TCLK_PERIOD);
if (tmr_ctrl != old_tmr_ctrl)
netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_write_reg(priv, NETC_TMR_ADD, period_frac);
}
static irqreturn_t netc_timer_isr(int irq, void *data)
{
struct netc_timer *priv = data;
struct ptp_clock_event event;
u32 tmr_event, tmr_emask;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
tmr_event = netc_timer_read_reg(priv, NETC_TMR_TEVENT);
tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);
/* Clear interrupts status */
netc_timer_write_reg(priv, NETC_TMR_TEVENT, tmr_event);
tmr_event &= tmr_emask;
if (tmr_event & TMR_TEVENT_PPEN_ALL) {
event.type = PTP_CLOCK_PPS;
ptp_clock_event(priv->clock, &event);
}
if (tmr_event & TMR_TEVENT_ALM1EN) {
tmr_emask &= ~TMR_TEVENT_ALM1EN;
netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0);
}
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_HANDLED;
}
static int netc_timer_get_clk_config(struct netc_timer *priv)
{
struct device_node *node = priv->dev->of_node;
u32 clk_cfg[3];
int err;
err = of_property_read_u32_array(node, "fsl,clk-cfg", clk_cfg,
ARRAY_SIZE(clk_cfg));
if (!err) {
priv->clk_freq = clk_cfg[0];
priv->period_int = clk_cfg[1];
priv->period_frac = clk_cfg[2];
priv->base_period = ((u64)priv->period_int << 32) |
priv->period_frac;
return 0;
}
priv->clk_freq = NETC_TMR_SYSCLK_RATE;
priv->period_int = NETC_TMR_SYSCLK_PERIOD_INT;
priv->period_frac = NETC_TMR_SYSCLK_PERIOD_FRAC;
priv->base_period = ((u64)priv->period_int << 32) | priv->period_frac;
return 0;
}
/* ppm: parts per million, ppb: parts per billion */
static int netc_timer_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct netc_timer *priv = container_of(ptp, struct netc_timer, caps);
u64 new_period;
if (!scaled_ppm)
return 0;
new_period = adjust_by_scaled_ppm(priv->base_period, scaled_ppm);
netc_timer_adjust_period(priv, new_period);
return 0;
}
static int netc_timer_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct netc_timer *priv;
unsigned long flags;
u64 ns, adj_ns;
priv = container_of(ptp, struct netc_timer, caps);
adj_ns = abs(delta);
spin_lock_irqsave(&priv->lock, flags);
ns = netc_timer_cnt_read(priv);
if (delta < 0)
ns -= adj_ns;
else
ns += adj_ns;
netc_timer_cnt_write(priv, ns);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int netc_timer_gettimex64(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct netc_timer *priv;
unsigned long flags;
u64 ns;
priv = container_of(ptp, struct netc_timer, caps);
spin_lock_irqsave(&priv->lock, flags);
ptp_read_system_prets(sts);
ns = netc_timer_cnt_read(priv);
ptp_read_system_postts(sts);
spin_unlock_irqrestore(&priv->lock, flags);
*ts = ns_to_timespec64(ns);
return 0;
}
static int netc_timer_settime64(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct netc_timer *priv;
unsigned long flags;
u64 ns;
priv = container_of(ptp, struct netc_timer, caps);
ns = timespec64_to_ns(ts);
spin_lock_irqsave(&priv->lock, flags);
netc_timer_cnt_write(priv, ns);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int netc_timer_enable_pps(struct netc_timer *priv,
struct ptp_clock_request *rq, int on)
{
u32 tmr_emask, fiper, fiper_ctrl, fiper_pw;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);
fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
if (on) {
fiper = div_u64(NSEC_PER_SEC, priv->period_int) - 1;
fiper = fiper * priv->period_int;
fiper_pw = netc_timer_calculate_fiper_pulse_width(priv, fiper);
fiper_ctrl &= ~(FIPER_CTRL_DIS(0) | FIPER_CTRL_PW(0));
fiper_ctrl |= fiper_pw & FIPER_CTRL_PW(0);
tmr_emask |= TMR_TEVNET_PPEN(0);
} else {
fiper = NETC_TMR_DEFAULT_FIPER;
tmr_emask &= ~TMR_TEVNET_PPEN(0);
fiper_ctrl |= FIPER_CTRL_DIS(0);
}
netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
netc_timer_write_reg(priv, NETC_TMR_FIPER(0), fiper);
netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int net_timer_enable_perout(struct netc_timer *priv,
struct ptp_clock_request *rq, int on)
{
u32 tmr_emask, tmr_ctrl, fiper, fiper_ctrl;
struct timespec64 period, stime;
u64 alarm, period_ns, cur_time;
u32 channel, fiper_pw;
unsigned long flags;
if (rq->perout.flags)
return -EOPNOTSUPP;
channel = rq->perout.index;
if (channel >= NETC_TMR_FIPER_NUM)
return -EINVAL;
spin_lock_irqsave(&priv->lock, flags);
tmr_ctrl = netc_timer_read_reg(priv, NETC_TMR_CTRL);
tmr_emask = netc_timer_read_reg(priv, NETC_TMR_TEMASK);
fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
if (!on) {
tmr_emask &= ~(TMR_TEVNET_PPEN(channel) |
TMR_TEVENT_ALM1EN);
tmr_ctrl &= ~TMR_CTRL_FS;
alarm = NETC_TMR_DEFAULT_ALARM;
fiper = NETC_TMR_DEFAULT_FIPER;
fiper_ctrl |= FIPER_CTRL_DIS(channel);
} else {
period.tv_sec = rq->perout.period.sec;
period.tv_nsec = rq->perout.period.nsec;
period_ns = timespec64_to_ns(&period);
stime.tv_sec = rq->perout.start.sec;
stime.tv_nsec = rq->perout.start.nsec;
tmr_emask |= TMR_TEVNET_PPEN(channel) | TMR_TEVENT_ALM1EN;
tmr_ctrl |= TMR_CTRL_FS;
tmr_ctrl &= ~TMR_ALARM1P;
/* fiper is set to desired FIPER interval in ns - TCLK_PERIOD
* and should be an integer multiple of TCLK_PERIOD.
*/
fiper = div_u64(period_ns, priv->period_int) - 1;
fiper = fiper * priv->period_int;
fiper_pw = netc_timer_calculate_fiper_pulse_width(priv, fiper);
if (fiper_pw == 0) {
dev_err(priv->dev, "The setting period is too small!\n");
spin_unlock_irqrestore(&priv->lock, flags);
return -EINVAL;
}
fiper_ctrl &= ~(FIPER_CTRL_DIS(channel) | FIPER_CTRL_PW(channel));
fiper_ctrl |= (fiper_pw << 8 * channel) & FIPER_CTRL_PW(channel);
/* alarm must be an integer multiple of TCLK_PERIOD in order
* to get correct result. In addtion, In FS mode the alarm
* trigger is used as an indication to the fiper start down
* counting. Only TMR_ALARM1 supports this mode.
*/
alarm = timespec64_to_ns(&stime);
cur_time = netc_timer_cnt_read(priv);
if (cur_time >= alarm) {
dev_err(priv->dev, "Start time must greater than current time!\n");
spin_unlock_irqrestore(&priv->lock, flags);
return -EINVAL;
}
alarm = div_u64(alarm, priv->period_int);
alarm = alarm * priv->period_int;
}
netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_write_reg(priv, NETC_TMR_TEMASK, tmr_emask);
netc_timer_write_reg(priv, NETC_TMR_FIPER(channel), fiper);
netc_timer_alarm_write(priv, alarm, 0);
netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int netc_timer_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct netc_timer *priv;
priv = container_of(ptp, struct netc_timer, caps);
switch (rq->type) {
case PTP_CLK_REQ_PEROUT:
return net_timer_enable_perout(priv, rq, on);
case PTP_CLK_REQ_PPS:
return netc_timer_enable_pps(priv, rq, on);
case PTP_CLK_REQ_EXTTS:
/* TODO */
default:
return -EOPNOTSUPP;
}
}
static const struct ptp_clock_info netc_timer_ptp_caps = {
.owner = THIS_MODULE,
.name = "NETC Timer PTP clock",
.max_adj = 500000000,
.n_alarm = 2,
.n_ext_ts = 2,
.n_per_out = 3,
.n_pins = 0,
.pps = 1,
.adjfine = netc_timer_adjfine,
.adjtime = netc_timer_adjtime,
.gettimex64 = netc_timer_gettimex64,
.settime64 = netc_timer_settime64,
.enable = netc_timer_enable,
};
int netc_timer_get_phc_index(int domain, unsigned int bus, unsigned int devfn)
{
struct pci_dev *timer_pdev;
struct netc_timer *priv;
timer_pdev = pci_get_domain_bus_and_slot(domain, bus, devfn);
if (!timer_pdev)
return -EINVAL;
priv = pci_get_drvdata(timer_pdev);
if (!priv)
return -EINVAL;
return priv->phc_index;
}
EXPORT_SYMBOL_GPL(netc_timer_get_phc_index);
static int netc_timer_init(struct netc_timer *priv)
{
struct device_node *node = priv->dev->of_node;
u32 tmr_ctrl, alarm_ctrl, fiper_ctrl;
struct timespec64 now;
unsigned long flags;
int i, err;
u64 ns;
priv->caps = netc_timer_ptp_caps;
priv->oclk_prsc = NETC_TMR_DEFAULT_PRSC;
if (of_property_read_u32(node, "fsl,clk-select", &priv->clk_select))
priv->clk_select = NETC_TMR_SYSTEM_CLK;
/* Check whether the clock source is valid */
if (priv->clk_select != NETC_TMR_SYSTEM_CLK &&
priv->clk_select != NETC_TMR_CCM_TIMER1 &&
priv->clk_select != NETC_TMR_EXT_OSC) {
dev_err(priv->dev, "Wrong clock source %d\n", priv->clk_select);
return -EINVAL;
}
err = netc_timer_get_clk_config(priv);
if (err)
return err;
alarm_ctrl = ALARM_CTRL_PG(0) | ALARM_CTRL_PG(1);
spin_lock_init(&priv->lock);
spin_lock_irqsave(&priv->lock, flags);
/* Software must enable timer first and the clock selected must be
* active, otherwise, the registers which are in the timer clock
* domain are not accesdible.
*/
tmr_ctrl = (priv->clk_select & TMR_CTRL_CK_SEL) | TMR_CTRL_TE;
netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
/* Output FIPER pulse clock (TMR_GCLK) is generated by dividing the
* input clock of Timer by priv->oclk_prsc. For example, if input
* clock of Timer is 200MHz, and priv->oclk_prsc is 2, then TMR_GCLK
* is 100MHz.
*/
netc_timer_write_reg(priv, NETC_TMR_PRSC, priv->oclk_prsc);
netc_timer_write_reg(priv, NETC_TMR_ALARM_CTRL, alarm_ctrl);
fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
for (i = 0; i < NETC_TMR_FIPER_NUM; i++)
fiper_ctrl |= FIPER_CTRL_DIS(i);
netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
ktime_get_real_ts64(&now);
ns = timespec64_to_ns(&now);
netc_timer_cnt_write(priv, ns);
/* Allow atomic writes to TCLK_PERIOD and TMR_ADD, An update
* to TCLK_PERIOD doesn't take effect until TMR_ADD is written.
*/
tmr_ctrl |= ((priv->period_int << 16) & TMR_CTRL_TCLK_PERIOD) |
TMR_COMP_MODE;
netc_timer_write_reg(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_write_reg(priv, NETC_TMR_ADD, priv->period_frac);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void netc_timer_deinit(struct netc_timer *priv)
{
unsigned long flags;
u32 fiper_ctrl;
int i;
spin_lock_irqsave(&priv->lock, flags);
netc_timer_write_reg(priv, NETC_TMR_TEMASK, 0);
netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0);
fiper_ctrl = netc_timer_read_reg(priv, NETC_TMR_FIPER_CTRL);
for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
netc_timer_write_reg(priv, NETC_TMR_FIPER(i),
NETC_TMR_DEFAULT_FIPER);
fiper_ctrl |= FIPER_CTRL_DIS(i);
}
netc_timer_write_reg(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
spin_unlock_irqrestore(&priv->lock, flags);
}
static int netc_timer_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct netc_timer *priv;
int err, len, n;
err = netc_ierb_get_init_status();
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev, "Can't get IERB init status: %d\n", err);
return err;
}
err = pci_enable_device_mem(pdev);
if (err)
return dev_err_probe(dev, err, "device enable failed\n");
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (err) {
dev_err(dev, "DMA configuration failed: 0x%x\n", err);
goto disable_dev;
}
err = pci_request_mem_regions(pdev, KBUILD_MODNAME);
if (err) {
dev_err(dev, "pci_request_regions failed err=%d\n", err);
goto disable_dev;
}
pci_set_master(pdev);
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
err = -ENOMEM;
goto release_mem_regions;
}
priv->dev = dev;
priv->pci_dev = pdev;
priv->phc_index = -1; /* initialize it as an invalid index */
len = pci_resource_len(pdev, NETC_TMR_REGS_BAR);
priv->base = ioremap(pci_resource_start(pdev, NETC_TMR_REGS_BAR), len);
if (!priv->base) {
err = -ENXIO;
dev_err(dev, "ioremap() failed\n");
goto free_priv;
}
n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX);
if (n != 1) {
err = -EPERM;
goto unmap_resource;
}
priv->irq = pci_irq_vector(pdev, 0);
snprintf(priv->irq_name, sizeof(priv->irq_name),
"ptp-netc %s", pci_name(pdev));
err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv);
if (err) {
dev_err(dev, "request_irq() failed!\n");
goto free_irq_vectors;
}
err = netc_timer_init(priv);
if (err) {
dev_err(dev, "NETC Timer initialization failed\n");
goto free_irq;
}
priv->clock = ptp_clock_register(&priv->caps, priv->dev);
if (IS_ERR(priv->clock)) {
err = PTR_ERR(priv->clock);
goto deinit_timer;
}
priv->phc_index = ptp_clock_index(priv->clock);
pci_set_drvdata(pdev, priv);
return 0;
deinit_timer:
netc_timer_deinit(priv);
free_irq:
free_irq(priv->irq, priv);
free_irq_vectors:
pci_free_irq_vectors(pdev);
unmap_resource:
iounmap(priv->base);
free_priv:
kfree(priv);
release_mem_regions:
pci_release_mem_regions(pdev);
disable_dev:
pci_disable_device(pdev);
return err;
}
static void netc_timer_remove(struct pci_dev *pdev)
{
struct netc_timer *priv = pci_get_drvdata(pdev);
netc_timer_deinit(priv);
ptp_clock_unregister(priv->clock);
iounmap(priv->base);
free_irq(priv->irq, priv);
pci_free_irq_vectors(pdev);
kfree(priv);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
static const struct pci_device_id netc_timer_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_NXP2, PCI_DEVICE_ID_NXP2_NETC_TIMER) },
{ 0, } /* End of table. */
};
MODULE_DEVICE_TABLE(pci, netc_timer_id_table);
static int ptp_netc_shutdown(struct netc_timer *priv)
{
struct pci_dev *pdev = priv->pci_dev;
netc_timer_deinit(priv);
disable_irq(priv->irq);
irq_set_affinity_hint(priv->irq, NULL);
free_irq(priv->irq, priv);
pci_free_irq_vectors(pdev);
pci_save_state(pdev);
pci_disable_device(priv->pci_dev);
return 0;
}
static int ptp_netc_powerup(struct netc_timer *priv)
{
struct pci_dev *pdev = priv->pci_dev;
int err, n;
err = netc_ierb_get_init_status();
if (err) {
dev_err(&pdev->dev, "Can't get IERB init status: %d\n", err);
return err;
}
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "device enable failed\n");
return err;
}
pci_restore_state(pdev);
pci_set_master(pdev);
n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX);
if (n != 1) {
err = -EPERM;
goto disable_dev;
}
priv->irq = pci_irq_vector(pdev, 0);
err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv);
if (err) {
dev_err(&pdev->dev, "request_irq() failed!\n");
goto free_irq_vectors;
}
err = netc_timer_init(priv);
if (err) {
dev_err(&pdev->dev, "NETC Timer initialization failed, err=%d\n", err);
goto free_irq;
}
return 0;
free_irq:
free_irq(priv->irq, priv);
free_irq_vectors:
pci_free_irq_vectors(pdev);
disable_dev:
pci_disable_device(pdev);
return err;
}
static int ptp_netc_suspend_noirq(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct netc_timer *priv;
int err;
priv = pci_get_drvdata(pdev);
if (netc_ierb_may_wakeonlan())
return 0;
err = ptp_netc_shutdown(priv);
if (err) {
dev_err(dev, "NETC Timer shutdown failed\n");
return err;
}
return err;
}
static int ptp_netc_resume_noirq(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct netc_timer *priv;
int err;
priv = pci_get_drvdata(pdev);
if (netc_ierb_may_wakeonlan())
return 0;
err = ptp_netc_powerup(priv);
if (err) {
dev_err(dev, "NETC Timer powerup failed\n");
kfree(priv);
return err;
}
return err;
}
static const struct dev_pm_ops __maybe_unused ptp_netc_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(ptp_netc_suspend_noirq,
ptp_netc_resume_noirq)
};
static struct pci_driver netc_timer_driver = {
.name = KBUILD_MODNAME,
.id_table = netc_timer_id_table,
.probe = netc_timer_probe,
.remove = netc_timer_remove,
.driver.pm = &ptp_netc_pm_ops,
};
module_pci_driver(netc_timer_driver);
MODULE_AUTHOR("Wei Fang <wei.fang@nxp.com>");
MODULE_DESCRIPTION("NXP NETC Timer Driver");
MODULE_LICENSE("Dual BSD/GPL");