linux-imx/drivers/thermal/imx91_thermal.c
Yanan Yang 8835cd9bec LF-14924 thermal: imx91: change the register DATA0 read value type
Read the temperature returns "Resource temporarily unavailable" when
it's below 0 degree. Because the register DATA0 is a 16-bit signed value,
but the origin code converted directly unsigned 32-bit into a signed
32-bit value.

This patch adds a new 16-bit signed variable and uses readw to replace
readl.

Signed-off-by: Yanan Yang <yanan.yang@nxp.com>
Signed-off-by: Joy Zou <joy.zou@nxp.com>
Reviewed-by: Ye Li <ye.li@nxp.com>
Acked-by: Jason Liu <jason.hui.liu@nxp.com>
2025-04-09 17:24:36 +08:00

367 lines
8.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2024 NXP.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/nvmem-consumer.h>
#include <linux/thermal.h>
#define CTRL0 0x0
#define STAT0 0x10
#define STAT0_DRDY0_IF_MASK BIT(16)
#define DATA0 0x20
#define DATA_NEGATIVE_MASK BIT(15)
#define DATA_INT_MASK GENMASK(14, 7)
#define DATA_FRAC_MASK GENMASK(6, 0)
#define THR_CTRL01 0x30
#define THR_CTRL23 0x40
#define CTRL1 0x200
#define CTRL1_SET 0x204
#define CTRL1_CLR 0x208
#define CTRL1_EN BIT(31)
#define CTRL1_START BIT(30)
#define CTRL1_STOP BIT(29)
#define CTRL1_RES_MASK GENMASK(19, 18)
#define CTRL1_MEAS_MODE_MASK GENMASK(25, 24)
#define PERIOD_CTRL 0x270
#define MEAS_FREQ_MASK GENMASK(23, 0)
#define REF_DIV 0x280
#define DIV_EN BIT(31)
#define DIV_MASK GENMASK(23, 16)
#define PUD_ST_CTRL 0x2B0
#define PUDL_MASK GENMASK(23, 16)
#define TRIM1 0x2E0
#define TRIM2 0x2F0
#define TMU_TEMP_PASSIVE_COOL_DELTA 10000
#define TMU_TEMP_LOW_LIMIT -40000
#define TMU_TEMP_HIGH_LIMIT 125000
#define DEFAULT_TRIM1_CONFIG 0xB561BC2DU
#define DEFAULT_TRIM2_CONFIG 0x65D4U
enum measure_mode {
SINGLE_ONESHOT_MODE,
CONTINUOUS_MODE,
PERIODIC_ONESHOT_MODE,
};
struct tmu_sensor {
struct imx91_tmu *priv;
u32 hw_id;
struct thermal_zone_device *tzd;
int temp_passive;
int temp_critical;
};
struct imx91_tmu {
void __iomem *base;
struct clk *clk;
struct device *dev;
struct tmu_sensor sensors;
};
enum tmu_trip {
TMU_TRIP_PASSIVE,
TMU_TRIP_CRITICAL,
TMU_TRIP_NUM,
};
static void imx91_tmu_start(struct imx91_tmu *tmu, bool start)
{
if (start)
writel_relaxed(CTRL1_START, tmu->base + CTRL1_SET);
else
writel_relaxed(CTRL1_STOP, tmu->base + CTRL1_SET);
}
static void imx91_tmu_enable(struct imx91_tmu *tmu, bool enable)
{
if (enable)
writel_relaxed(CTRL1_EN, tmu->base + CTRL1_SET);
else
writel_relaxed(CTRL1_EN, tmu->base + CTRL1_CLR);
}
static int imx91_tmu_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct tmu_sensor *sensor = thermal_zone_device_priv(tz);
struct imx91_tmu *tmu = sensor->priv;
u32 val;
int ret;
int16_t data;
ret = readl_relaxed_poll_timeout(tmu->base + STAT0, val,
val & STAT0_DRDY0_IF_MASK, 1000,
40000);
if (ret)
return -EAGAIN;
data = readw_relaxed(tmu->base + DATA0);
*temp = data * 1000 / 64;
if (*temp < TMU_TEMP_LOW_LIMIT || *temp > TMU_TEMP_HIGH_LIMIT)
return -EAGAIN;
return 0;
}
static int imx91_tmu_get_trend(struct thermal_zone_device *tz,
const struct thermal_trip *trip, enum thermal_trend *trend)
{
int trip_temp;
struct tmu_sensor *sensor = tz->devdata;
if (!sensor->tzd)
return 0;
trip_temp = (trip->type == THERMAL_TRIP_PASSIVE) ?
sensor->temp_passive : sensor->temp_critical;
if (sensor->tzd->temperature >= (trip_temp - TMU_TEMP_PASSIVE_COOL_DELTA))
*trend = THERMAL_TREND_RAISING;
else
*trend = THERMAL_TREND_DROPPING;
return 0;
}
static int imx91_tmu_set_trip_temp(struct thermal_zone_device *tz, int trip, int temp)
{
struct tmu_sensor *sensor = tz->devdata;
if (trip == TMU_TRIP_CRITICAL)
sensor->temp_critical = temp;
if (trip == TMU_TRIP_PASSIVE)
sensor->temp_passive = temp;
return 0;
}
static struct thermal_zone_device_ops tmu_tz_ops = {
.get_temp = imx91_tmu_get_temp,
.get_trend = imx91_tmu_get_trend,
.set_trip_temp = imx91_tmu_set_trip_temp,
};
static int imx91_init_from_nvmem_cells(struct imx91_tmu *tmu)
{
struct device *dev = tmu->dev;
int ret;
u32 trim1, trim2;
ret = nvmem_cell_read_u32(dev, "tmu-trim1", &trim1);
if (ret)
return ret;
ret = nvmem_cell_read_u32(dev, "tmu-trim2", &trim2);
if (ret)
return ret;
if (trim1 == 0 || trim2 == 0)
return -EINVAL;
writel_relaxed(trim1, tmu->base + TRIM1);
writel_relaxed(trim2, tmu->base + TRIM2);
return 0;
}
static int imx91_tmu_probe(struct platform_device *pdev)
{
struct thermal_trip trip;
struct imx91_tmu *tmu;
unsigned long rate;
u32 div;
int ret;
int i = 0;
tmu = devm_kzalloc(&pdev->dev, sizeof(struct imx91_tmu), GFP_KERNEL);
if (!tmu)
return -ENOMEM;
tmu->dev = &pdev->dev;
tmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(tmu->base))
return PTR_ERR(tmu->base);
tmu->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(tmu->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(tmu->clk),
"failed to get tmu clock\n");
tmu->sensors.priv = tmu;
tmu->sensors.tzd = devm_thermal_of_zone_register(&pdev->dev, i, &tmu->sensors,
&tmu_tz_ops);
if (IS_ERR(tmu->sensors.tzd)) {
ret = PTR_ERR(tmu->sensors.tzd);
dev_err(&pdev->dev, "failed to register thermal zone sensor: %d\n", ret);
return ret;
}
tmu->sensors.hw_id = 0;
for (i = 0; i < thermal_zone_get_num_trips(tmu->sensors.tzd); i++) {
ret = thermal_zone_get_trip(tmu->sensors.tzd, i, &trip);
if (ret)
continue;
if (trip.type == THERMAL_TRIP_CRITICAL)
tmu->sensors.temp_critical = trip.temperature;
else if (trip.type == THERMAL_TRIP_PASSIVE)
tmu->sensors.temp_passive = trip.temperature;
}
platform_set_drvdata(pdev, tmu);
ret = clk_prepare_enable(tmu->clk);
if (ret) {
dev_err(&pdev->dev, "failed to enable tmu clock: %d\n", ret);
goto free_cooling;
}
/* disable the monitor during initialization */
imx91_tmu_enable(tmu, false);
imx91_tmu_start(tmu, false);
ret = imx91_init_from_nvmem_cells(tmu);
if (ret) {
writel_relaxed(DEFAULT_TRIM1_CONFIG, tmu->base + TRIM1);
writel_relaxed(DEFAULT_TRIM2_CONFIG, tmu->base + TRIM2);
}
/* The typical conv clk is 4MHz, the output freq is 'rate / (div + 1)' */
rate = clk_get_rate(tmu->clk);
div = (rate / 4000000) - 1;
/* Set divider value and enable divider */
writel_relaxed(DIV_EN | FIELD_PREP(DIV_MASK, div), tmu->base + REF_DIV);
/* Set max power up delay: 'Tpud(ms) = 0xFF * 1000 / 4000000' */
writel_relaxed(FIELD_PREP(PUDL_MASK, 100U), tmu->base + PUD_ST_CTRL);
/*
* Set resolution mode
* 00b - Conversion time = 0.59325 ms
* 01b - Conversion time = 1.10525 ms
* 10b - Conversion time = 2.12925 ms
* 11b - Conversion time = 4.17725 ms
*/
writel_relaxed(FIELD_PREP(CTRL1_RES_MASK, 0x3), tmu->base + CTRL1_CLR);
writel_relaxed(FIELD_PREP(CTRL1_RES_MASK, 0x1), tmu->base + CTRL1_SET);
/*
* Set measure mode
* 00b - Single oneshot measurement
* 10b - Periodic oneshot measurement
*/
writel_relaxed(FIELD_PREP(CTRL1_MEAS_MODE_MASK, 0x3), tmu->base + CTRL1_CLR);
writel_relaxed(FIELD_PREP(CTRL1_MEAS_MODE_MASK, 0x2), tmu->base + CTRL1_SET);
/*
* Set Periodic Measurement Frequency to 25Hz:
* tMEAS_FREQ = tCONV_CLK * PERIOD_CTRL[MEAS_FREQ]. ->
* PERIOD_CTRL(MEAS_FREQ) = (1000 / 25) / (1000 / 4000000);
* Where tMEAS_FREQ = Measurement period and tCONV_CLK = 1/fCONV_CLK.
* This field should have value greater than count corresponds
* to time greater than summation of conversion time, power up
* delay, and six times of conversion clock time.
* tMEAS_FREQ > (tCONV + tPUD + 6 * tCONV_CLK).
* tCONV is conversion time determined by CTRL1[RESOLUTION].
*/
writel_relaxed(FIELD_PREP(MEAS_FREQ_MASK, 0x27100), tmu->base + PERIOD_CTRL);
/* enable the monitor */
imx91_tmu_enable(tmu, true);
imx91_tmu_start(tmu, true);
return 0;
free_cooling:
devm_thermal_of_zone_unregister(&pdev->dev, tmu->sensors.tzd);
return ret;
}
static int imx91_tmu_remove(struct platform_device *pdev)
{
struct imx91_tmu *tmu = platform_get_drvdata(pdev);
/* disable tmu */
imx91_tmu_start(tmu, false);
imx91_tmu_enable(tmu, false);
clk_disable_unprepare(tmu->clk);
platform_set_drvdata(pdev, NULL);
return 0;
}
static int __maybe_unused imx91_tmu_suspend(struct device *dev)
{
struct imx91_tmu *tmu = dev_get_drvdata(dev);
/* disable tmu */
imx91_tmu_start(tmu, false);
imx91_tmu_enable(tmu, false);
clk_disable_unprepare(tmu->clk);
return 0;
}
static int __maybe_unused imx91_tmu_resume(struct device *dev)
{
struct imx91_tmu *tmu = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(tmu->clk);
if (ret)
return ret;
imx91_tmu_enable(tmu, true);
imx91_tmu_start(tmu, true);
return 0;
}
static SIMPLE_DEV_PM_OPS(imx91_tmu_pm_ops,
imx91_tmu_suspend, imx91_tmu_resume);
static const struct of_device_id imx91_tmu_table[] = {
{ .compatible = "fsl,imx91-tmu", },
{ },
};
MODULE_DEVICE_TABLE(of, imx91_tmu_table);
static struct platform_driver imx91_tmu = {
.driver = {
.name = "i.MX91_thermal",
.pm = &imx91_tmu_pm_ops,
.of_match_table = imx91_tmu_table,
},
.probe = imx91_tmu_probe,
.remove = imx91_tmu_remove,
};
module_platform_driver(imx91_tmu);
MODULE_AUTHOR("Peng Fan <peng.fan@nxp.com>");
MODULE_DESCRIPTION("i.MX91 Thermal Monitor Unit driver");
MODULE_LICENSE("GPL");